pySPEDAS Documentation
pySPEDAS is an implementation of the Space Physics Environment Data Analysis Software (SPEDAS) framework in Python.
The SPEDAS framework is written in IDL and contains data loading, data analysis and data plotting tools for various scientific missions (NASA, NOAA, etc.) and ground magnetometers.
pySPEDAS and pyTplot make creating multi-mission, multi-instrument figures simple, e.g., to create a figure showing magnetometer data from Solar Orbiter, Parker Solar Probe, MMS, and THEMIS,
import pyspedas
from pytplot import tplot
time_range = ['2020-04-20/06:00', '2020-04-20/08:00']
pyspedas.solo.mag(trange=time_range, time_clip=True)
pyspedas.psp.fields(trange=time_range, time_clip=True)
pyspedas.mms.fgm(trange=time_range, time_clip=True, probe=2)
pyspedas.themis.fgm(trange=time_range, time_clip=True, probe='d')
tplot(['B_RTN', 'psp_fld_l2_mag_RTN', 'mms2_fgm_b_gsm_srvy_l2_bvec', 'thd_fgs_gsm'])

Getting Started
pySPEDAS supports Windows, macOS and Linux.
Requirements
Python 3.7 or later is required.
We recommend Anaconda, which comes with a suite of packages useful for scientific data analysis. Step-by-step instructions for installing Anaconda can be found at: Windows, macOS, Linux
Installation
To get started, install the pyspedas package using PyPI:
pip install pyspedas
To upgrade to the latest version of pySPEDAS, include the ‘–upgrade’ option when calling pip, e.g.,
pip install pyspedas --upgrade
Local Data Directories
By default, the data are stored in your pyspedas directory in a folder named ‘pydata’. The recommended way of setting your local data directory is to set the SPEDAS_DATA_DIR environment variable. SPEDAS_DATA_DIR acts as a root data directory for all missions, and will also be used by IDL (if you’re running a recent copy of the bleeding edge).
Mission specific data directories (e.g., MMS_DATA_DIR for MMS, THM_DATA_DIR for THEMIS) can also be set, and these will override SPEDAS_DATA_DIR.
Loading and Plotting Data
You can load data into tplot variables by calling pyspedas.mission.instrument(), e.g.,
import pyspedas
pyspedas.mms.fgm()
The load routines support several keywords to control which data products are loaded (datatype, level, etc).
To plot the tplot variables that were loaded, use tplot from pytplot, e.g.,
from pytplot import tplot
tplot(['mms1_fgm_b_gse_srvy_l2_btot', 'mms1_fgm_b_gse_srvy_l2_bvec'])
Accessing the Data and Timestamps
Once the data are loaded into tplot variables, you can access them using the get_data function from pytplot. e.g.,
from pytplot import get_data
mag_data = get_data('mms1_fgm_b_gse_srvy_l2_bvec')
# get_data returns a namedtuple with 'times' and 'y':
mag_data.times # the unix times, stored as a numpy array
mag_data.y # the data values
Note: some types of data (spectrograms, DFs) have higher dimensions; e.g., spectra have a ‘v’ with the y-axis values for the data stored in ‘y’, and some data can have several dimensions: ‘v1’, ‘v2’, and ‘v3’
Load Routines
Advanced Composition Explorer (ACE)
The routines in this module can be used to load data from the Advanced Composition Explorer (ACE) mission.
Magnetometer (MFI)
- pyspedas.ace.mfi(trange=['2018-11-5', '2018-11-6'], datatype='h3', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Fluxgate Magnetometer
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) –- Data type; Valid options:
h0: 16-Second Level 2 Data h1: 4-Minute Level 2 Data h2: 1-Hour Level 2 Data h3: (default) 1-Second Level 2 Data k0: 5-Minute Key Parameters [PRELIM] k1: 16-Second Key Parameters [PRELIM] k2: 1-Hour Key Parameters [PRELIM]
suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
pyspedas.ace.mfi(trange=['2018-11-5', '2018-11-6'])
tplot(['BGSEc', 'Magnitude'])

Solar Wind Electron, Proton and Alpha Monitor (SWEPAM)
- pyspedas.ace.swe(trange=['2018-11-5', '2018-11-6'], datatype='h0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Solar Wind Electron, Proton and Alpha Monitor (SWEPAM)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) –- Data type; Valid options:
h0: (default) 64-Second Level 2 Data h2: 1-Hour Level 2 Data k0: 5-Minute Key Parameters [PRELIM] k1: 1-Hour Key Parameters [PRELIM]
suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
pyspedas.ace.swe(trange=['2018-11-5', '2018-11-5/12:00'], time_clip=True)
tplot(['Np', 'Vp', 'He_ratio', 'Tpr'])

Electron, Proton, and Alpha-particle Monitor (EPAM)
- pyspedas.ace.epam(trange=['2018-11-5', '2018-11-6'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Electron Proton Alpha Monitor (EPAM)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) –- Data type; Valid options:
h1: 5-Minute Level 2 Data h2: 1-Hour Level 2 Data h3: 12-second Level 2 Data k0: (default) 5-Minute Key Parameters k1: 1-Hour Key Parameters
suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Cosmic Ray Isotope Spectrometer (CRIS)
- pyspedas.ace.cris(trange=['2018-11-5', '2018-11-6'], datatype='h2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Cosmic Ray Isotope Spectrometer (CRIS)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) –- Data type; Valid options:
h2: (default) 1-Hour Level 2 Data h3: Daily-averaged Level 2 Data
suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Solar Isotope Spectrometer (SIS)
- pyspedas.ace.sis(trange=['2018-11-5', '2018-11-6'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Solar Isotope Spectrometer (SIS)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) –- Data type; Valid options:
h1: (default) 256-sec Level 2 Data h2: 1-Hour Level 2 Data k0: 1-Hour Key Parameters
suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Ultra Low Energy Isotope Spectrometer (ULEIS)
- pyspedas.ace.uleis(trange=['2018-11-5', '2018-11-6'], datatype='h2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Ultra Low Energy Isotope Spectrometer (ULEIS)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) –- Data type; Valid options:
h2: 1-Hour Level 2 Data
suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Solar Energetic Particle Ionic Charge Analyzer (SEPICA)
- pyspedas.ace.sepica(trange=['2004-11-5', '2004-11-6'], datatype='h2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Solar Energetic Particle Ionic Charge Analyzer (SEPICA)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) –- Data type; Valid options:
h2: 1-Hour Level 2 Data
suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Solar Wind Ion Composition Spectrometer (SWICS)
- pyspedas.ace.swics(trange=['2018-11-5', '2018-11-6'], datatype='sw2_h3', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Solar Wind Ion Composition Spectrometer (SWICS)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) –- Data type; Valid options:
sw2_h3: (default) SWICS 2.0 Solar Wind 2-Hour Level 2 Data swi_h2: SWICS 1.1 Solar Wind 1-Hour Level 2 Data swi_h3: SWICS 1.1 Solar Wind 2-Hour Level 2 Data swi_h4: SWICS 1.1 Solar Wind 1-Day Level 2 Data swi_h5: SWICS 1.1 Solar Wind 2-Hour Level 2 Q-state distributions swi_h6: Solar Wind Protons 12-min Level 2 Data
suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Arase (ERG)
The routines in this module can be used to load data from the Arase mission.
Magnetic Field Experiment (MGF)
- pyspedas.erg.mgf(trange=['2017-03-27', '2017-03-28'], datatype='8sec', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, uname=None, passwd=None, time_clip=False, ror=True, coord='dsi', version=None)
This function loads data from the MGF experiment from the Arase mission
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
level – str Data level; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
ror – bool If set, print PI info and rules of the road
coord – str “sm”, “dsi”, “gse”, “gsm”, “sgi”
version – str Set this value to specify the version of cdf files (such as “v03.03”, “v03.04”, …)
- Returns
List of tplot variables created.
Extremely High-energy electrons (XEP-e)
- pyspedas.erg.xep(trange=['2017-06-01', '2017-06-02'], datatype='omniflux', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, uname=None, passwd=None, time_clip=False, ror=True)
This function loads data from the XEP-e experiment from the Arase mission
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
level – str Data level; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
ror – bool If set, print PI info and rules of the road
- Returns
List of tplot variables created.
High-energy Particles – electrons (HEP-e)
- pyspedas.erg.hep(trange=['2017-03-27', '2017-03-28'], datatype='omniflux', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, uname=None, passwd=None, time_clip=False, ror=True, version=None)
This function loads data from the HEP experiment from the Arase mission
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
level – str Data level; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
ror – bool If set, print PI info and rules of the road
version – str Set this value to specify the version of cdf files (such as “v01_02”, “v01_03”, …)
- Returns
List of tplot variables created.
Medium-energy Particles - electrons (MEP-e)
- pyspedas.erg.mepe(trange=['2017-03-27', '2017-03-28'], datatype='omniflux', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, uname=None, passwd=None, time_clip=False, ror=True)
This function loads data from the MEP-e experiment from the Arase mission
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
level – str Data level; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
ror – bool If set, print PI info and rules of the road
- Returns
List of tplot variables created.
Low-energy Particles – electrons (LEP-e)
- pyspedas.erg.lepe(trange=['2017-04-04', '2017-04-05'], datatype='omniflux', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, uname=None, passwd=None, time_clip=False, ror=True, version=None, only_fedu=False, et_diagram=False)
This function loads data from the LEP-e experiment from the Arase mission
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
level – str Data level; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
ror – bool If set, print PI info and rules of the road
version – str Set this value to specify the version of cdf files (such as “v02_02”)
only_fedu – bool If set, not make erg_lepe_l3_pa_enech_??(??:01,01,..32)_FEDU Tplot Variables
et_diagram – bool If set, make erg_lepe_l3_pa_pabin_??(??:01,01,..16)_FEDU Tplot Variables
- Returns
List of tplot variables created.
Medium-energy Particles – ion (MEP-i)
Low-energy Particles – ion (LEP-i)
- pyspedas.erg.lepi(trange=['2017-07-01', '2017-07-02'], datatype='omniflux', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, uname=None, passwd=None, time_clip=False, ror=True, version=None)
This function loads data from the LEP-i experiment from the Arase mission
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
level – str Data level; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
ror – bool If set, print PI info and rules of the road
version – str Set this value to specify the version of cdf files (such as “v03_00”)
- Returns
List of tplot variables created.
Plasma Wave Experiment (PWE)
- pyspedas.erg.pwe_ofa(trange=['2017-04-01', '2017-04-02'], datatype='spec', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, uname=None, passwd=None, time_clip=False, ror=True)
This function loads data from the PWE experiment from the Arase mission
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
level – str Data level; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
ror – bool If set, print PI info and rules of the road
- Returns
List of tplot variables created.
- pyspedas.erg.pwe_hfa(trange=['2017-04-01', '2017-04-02'], datatype='spec', mode='low', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, uname=None, passwd=None, time_clip=False, ror=True)
This function loads data from the PWE experiment from the Arase mission
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
level – str Data level; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
ror – bool If set, print PI info and rules of the road
- Returns
List of tplot variables created.
- pyspedas.erg.pwe_efd(trange=['2017-04-01', '2017-04-02'], datatype='E_spin', level='l2', suffix='', coord='dsi', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, uname=None, passwd=None, time_clip=False, ror=True)
This function loads data from the PWE experiment from the Arase mission
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
level – str Data level; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
ror – bool If set, print PI info and rules of the road
- Returns
List of tplot variables created.
Orbit data
- pyspedas.erg.orb(trange=['2017-03-27', '2017-03-28'], datatype='def', level='l2', model='op', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, uname=None, passwd=None, time_clip=False, version=None, ror=True)
This function loads orbit data from the Arase mission
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
level – str Data level; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
version – str Set this value to specify the version of cdf files (such as “v03”)
- Returns
List of tplot variables created.
Cluster
The routines in this module can be used to load data from the Cluster mission.
Fluxgate Magnetometer (FGM)
- pyspedas.cluster.fgm(trange=['2018-11-5', '2018-11-6'], probe='1', datatype='up', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Fluxgate Magnetometer
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Active Spacecraft Potential Control experiment (ASPOC)
- pyspedas.cluster.aspoc(trange=['2018-11-5', '2018-11-6'], probe='1', datatype='pp', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Active Spacecraft Potential Control experiment
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Cluster Ion Spectroscopy experiment (CIS)
- pyspedas.cluster.cis(trange=['2018-11-5', '2018-11-6'], probe='1', datatype='pp', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Cluster Ion Spectroscopy experiment
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Digital Wave Processing instrument (DWP)
- pyspedas.cluster.dwp(trange=['2018-11-5', '2018-11-6'], probe='1', datatype='pp', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Digital Wave Processing instrument
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Electron Drift Instrument (EDI)
- pyspedas.cluster.edi(trange=['2018-11-5', '2018-11-6'], probe='1', datatype='pp', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Electron Drift Instrument
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Electric Field and Wave experiment (EFW)
- pyspedas.cluster.efw(trange=['2018-11-5', '2018-11-6'], probe='1', datatype='pp', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Electric Field and Wave experiment
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Plasma Electron and Current Experiment (PEACE)
- pyspedas.cluster.peace(trange=['2016-11-5', '2016-11-6'], probe='1', datatype='pp', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Plasma Electron and Current Experiment
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Research with Adaptive Particle Imaging Detectors (RAPID)
- pyspedas.cluster.rapid(trange=['2016-11-5', '2016-11-6'], probe='1', datatype='pp', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Research with Adaptive Particle Imaging Detectors
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Spatio-Temporal Analysis of Field Fluctuation experiment (STAFF)
- pyspedas.cluster.staff(trange=['2012-11-5', '2012-11-6'], probe='1', datatype='pp', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Spatio-Temporal Analysis of Field Fluctuation experiment
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Wide Band Data receiver (WBD)
- pyspedas.cluster.wbd(trange=['2012-11-6', '2012-11-7'], probe='1', datatype='waveform', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Wide Band Data receiver
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Waves of High Frequency and Sounder for Probing of Density by Relaxation (WHISPER)
- pyspedas.cluster.whi(trange=['2012-11-5', '2012-11-6'], probe='1', datatype='pp', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Waves of High Frequency and Sounder for Probing of Density by Relaxation instrument
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Colorado Student Space Weather Experiment (CSSWE)
The routines in this module can be used to load data from the CSSWE mission.
Relativistic Electron and Proton Telescope integrated little experiment (REPTile)
- pyspedas.csswe.reptile(trange=['2013-11-5', '2013-11-6'], datatype='flux', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) –- Data type; Valid options:
‘counts’ for L1 data ‘flux’ for L2 data
level (
str
) – Data level; options: ‘l1’, ‘l2’ (default: l2)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Deep Space Climate Observatory (DSCOVR)
The routines in this module can be used to load data from the DSCOVR mission.
Magnetometer
- pyspedas.dscovr.mag(trange=['2018-10-16', '2018-10-17'], datatype='h0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads DSCOVR Fluxgate Magnetometer data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) –- Data type; Valid options:
‘h0’: 1-sec Definitive Data (default)
suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Faraday cup
- pyspedas.dscovr.fc(trange=['2018-10-16', '2018-10-17'], datatype='h1', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads DSCOVR Faraday Cup data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) –- Data type; Valid options:
‘h1’: 1-minute Isotropic Maxwellian parameters for solar wind protons (default)
suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Orbit data
- pyspedas.dscovr.orb(trange=['2018-10-16', '2018-10-17'], datatype='orbit', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads DSCOVR Ephemeris data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Attitude data
- pyspedas.dscovr.att(trange=['2018-10-16', '2018-10-17'], datatype='orbit', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads DSCOVR Attitude data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
All data
- pyspedas.dscovr.all(trange=['2018-10-16', '2018-10-17'], downloadonly=False, suffix='', no_update=False, time_clip=False)
This function loads all DSCOVR data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Equator-S
The routines in this module can be used to load data from the Equator-S mission.
Fluxgate magnetometer (MAM)
- pyspedas.equator_s.mam(trange=['1998-04-06', '1998-04-07'], datatype='pp', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Fluxgate magnetometer
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Electron beam sensing instrument (EDI)
- pyspedas.equator_s.edi(trange=['1998-04-06', '1998-04-07'], datatype='pp', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Electron beam sensing instrument
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Electrostatic analyzer (3DA)
- pyspedas.equator_s.esa(trange=['1998-04-06', '1998-04-07'], datatype='pp', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Electrostatic analyzer (3DA)
NOTE: as of Dec 2019, no 3DA data are available via the SPDF archive.
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Solid state detector (EPI)
- pyspedas.equator_s.epi(trange=['1998-04-06', '1998-04-07'], datatype='pp', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Solid state detector
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Time-of-fight spectrometer (ICI)
- pyspedas.equator_s.ici(trange=['1998-04-06', '1998-04-07'], datatype='pp', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Time-of-fight spectrometer
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Ion emitter (PCD)
- pyspedas.equator_s.pcd(trange=['1998-04-06', '1998-04-07'], datatype='pp', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Ion emitter
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Scintillating fiber detector (SFD)
- pyspedas.equator_s.sfd(trange=['1998-01-26', '1998-01-27'], datatype='sp', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Scintillating fiber detector
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Fast Auroral Snapshot Explorer (FAST)
The routines in this module can be used to load data from the FAST mission.
Fluxgate Magnetometer (DCB)
- pyspedas.fast.dcb(trange=['2001-09-05', '2001-09-06'], datatype='', level='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Fluxgate Magnetometer
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Search-coil Magnetometer (ACB)
- pyspedas.fast.acb(trange=['1998-01-05', '1998-01-06'], datatype='', level='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Search-coil Magnetometer
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Electrostatic Analyzers (ESA)
- pyspedas.fast.esa(trange=['1998-09-05', '1998-09-06'], datatype='ies', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Electrostatic Analyzers (ESA)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Time-of-flight Energy Angle Mass Spectrograph (TEAMS)
- pyspedas.fast.teams(trange=['1998-09-05', '1998-09-06'], datatype='', level='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Time-of-flight Energy Angle Mass Spectrograph (TEAMS)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Geotail
The routines in this module can be used to load data from the Geotail mission.
Magnetic Field Experiment (MGF)
- pyspedas.geotail.mgf(trange=['2018-11-5', '2018-11-6'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the MGF instrument
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Electric Field Detector (EFD)
- pyspedas.geotail.efd(trange=['2018-11-5', '2018-11-6'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the EFD instrument
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Low Energy Particle experiment (LEP)
- pyspedas.geotail.lep(trange=['2018-11-5', '2018-11-6'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the LEP instrument
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Comprehensive Plasma Instrumentation (CPI)
- pyspedas.geotail.cpi(trange=['2018-11-5', '2018-11-6'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the CPI instrument
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Energetic Particles and Ion Composition Instrument (EPIC)
- pyspedas.geotail.epic(trange=['2018-11-5', '2018-11-6'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the EPIC instrument
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Plasma Wave Instrument (PWI)
- pyspedas.geotail.pwi(trange=['2018-11-5', '2018-11-6'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the PWI instrument
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Geostationary Operational Environmental Satellite (GOES)
The routines in this module can be used to load data from the GOES mission.
Magnetometer (FGM)
- pyspedas.goes.fgm(trange=['2013-11-5', '2013-11-6'], probe='15', datatype='1min', suffix='', downloadonly=False, no_update=False, time_clip=False)
This function loads data from the GOES Magnetometer
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str/int
orlist
ofstrs/ints
) – GOES spacecraft #, e.g., probe=15datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Imager for Magnetopause-to-Aurora Global Exploration (IMAGE)
The routines in this module can be used to load data from the IMAGE ission.
Low-Energy Neutral Atom (LENA) imager
- pyspedas.image.lena(trange=['2004-11-5', '2004-11-6'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads IMAGE LENA data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Medium-Energy Neutral Atom (MENA) imager
- pyspedas.image.mena(trange=['2004-11-5', '2004-11-6'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads IMAGE MENA data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
High-Energy Neutral Atom (HENA) imager
- pyspedas.image.hena(trange=['2004-11-5', '2004-11-6'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads IMAGE HENA data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Radio Plasma Imaging (RPI)
- pyspedas.image.rpi(trange=['2004-11-5', '2004-11-6'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads IMAGE RPI data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Extreme Ultraviolet Imager (EUV)
- pyspedas.image.euv(trange=['2004-11-5', '2004-11-6'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads IMAGE EUV data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Far Ultraviolet Imager (FUV)
- pyspedas.image.fuv(trange=['2004-11-5', '2004-11-6'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads IMAGE FUV data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Orbit data
- pyspedas.image.orbit(trange=['2004-11-5', '2004-11-6'], datatype='def_or', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads IMAGE orbit data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Mars Atmosphere and Volatile Evolution (MAVEN)
The routines in this module can be used to load data from the MAVEN mission.
Magnetometer (MAG)
- pyspedas.maven.mag(trange=['2016-01-01', '2016-01-02'], level='l2', datatype='ss', varformat=None, get_support_data=False, auto_yes=True, downloadonly=False, varnames=[])
Solar Wind Electron Analyzer (SWEA)
- pyspedas.maven.swea(trange=['2016-01-01', '2016-01-02'], level='l2', datatype='svyspec', varformat=None, get_support_data=False, auto_yes=True, downloadonly=False, varnames=[])
Solar Wind Ion Analyzer (SWIA)
- pyspedas.maven.swia(trange=['2016-01-01', '2016-01-02'], level='l2', datatype='onboardsvyspec', varformat=None, get_support_data=False, auto_yes=True, downloadonly=False, varnames=[])
SupraThermal And Thermal Ion Composition (STATIC)
- pyspedas.maven.sta(trange=['2016-01-01', '2016-01-02'], level='l2', datatype='2a', varformat=None, get_support_data=False, auto_yes=True, downloadonly=False, varnames=[])
Solar Energetic Particle (SEP)
- pyspedas.maven.sep(trange=['2016-01-01', '2016-01-02'], level='l2', datatype='s2-cal-svy-full', varformat=None, get_support_data=False, auto_yes=True, downloadonly=False, varnames=[])
Langmuir Probe and Waves (LPW)
- pyspedas.maven.lpw(trange=['2016-01-01', '2016-01-02'], level='l2', datatype='lpiv', varformat=None, get_support_data=False, auto_yes=True, downloadonly=False, varnames=[])
Extreme Ultraviolet Monitor (EUV)
- pyspedas.maven.euv(trange=['2016-01-01', '2016-01-02'], level='l2', datatype='bands', varformat=None, get_support_data=False, auto_yes=True, downloadonly=False, varnames=[])
Magnetic Induction Coil Array (MICA)
The routines in this module can be used to load data from the Magnetic Induction Coil Array (MICA).
- pyspedas.mica.induction(site=None, trange=['2019-02-01', '2019-02-02'], suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Magnetic Induction Coil Array (MICA)
- Parameters
site (
str
) – abbreviated name of station. sites include: NAL, LYR, LOR, ISR, SDY, IQA, SNK, MCM, SPA, JBS, NEV, HAL, PG2[3,4,5]trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Magnetospheric Multiscale (MMS)
The routines in this module can be used to load data from the Magnetospheric Multiscale (MMS) mission.
Fluxgate Magnetometer (FGM)
- pyspedas.mms.fgm(*args, **kwargs)
This function loads FGM data into tplot variables
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – list of probes, valid values for MMS probes are [‘1’,’2’,’3’,’4’].data_rate (
str
orlist
ofstr
) – instrument data rates for FGM include ‘brst’ ‘fast’ ‘slow’ ‘srvy’. The default is ‘srvy’.level (
str
) – indicates level of data processing. the default if no level is specified is ‘l2’datatype (
str
orlist
ofstr
) – no datatype for FGM instrument (all science data are loaded)get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.time_clip (
bool
) – Data will be clipped to the exact trange specified by the trange keyword.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.notplot (
bool
) – If True, then data are returned in a hash table instead of being stored in tplot variables (useful for debugging, and access to multi-dimensional data products)available (
bool
) – If True, simply return the available data files (without downloading) for the requested paramtersno_update (
bool
) – Set this flag to preserve the original data. if not set and newer data is found the existing data will be overwrittencdf_version (
str
) – Specify a specific CDF version # to load (e.g., cdf_version=’4.3.0’)min_version (
str
) – Specify a minimum CDF version # to loadlatest_version (
bool
) – Only grab the latest CDF version in the requested time intervalmajor_version (
bool
) – Only open the latest major CDF version (e.g., X in vX.Y.Z) in the requested time intervalkeep_flagged (
bool
) – If True, don’t remove flagged data (flagged data are set to NaNs by default, this keyword turns this off)always_prompt (
bool
) – Set this keyword to always prompt for the user’s username and password; useful if you accidently save an incorrect password, or if your SDC password has changedspdf (
bool
) – If True, download the data from the SPDF instead of the SDCget_fgm_ephemeris (
bool
) – Keep the ephemeris variables in the FGM files
- Returns
List of tplot variables created.
FGM Example
import pyspedas
from pytplot import tplot
pyspedas.mms.fgm(trange=['2015-10-16/12:45', '2015-10-16/13:00'], time_clip=True)
tplot(['mms1_fgm_b_gsm_srvy_l2_btot', 'mms1_fgm_b_gsm_srvy_l2_bvec'])

Search-coil Magnetometer (SCM)
- pyspedas.mms.scm(*args, **kwargs)
This function loads SCM data into tplot variables
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – list of probes, valid values for MMS probes are [‘1’,’2’,’3’,’4’].data_rate (
str
orlist
ofstr
) – instrument data rates for SCM include [‘brst’ ‘fast’ ‘slow’ ‘srvy’]. The default is ‘srvy’.level (
str
) – indicates level of data processing. the default if no level is specified is ‘l2’datatype (
str
orlist
ofstr
) – Valid datatypes for SCM are: [‘scsrvy’, ‘cal’, ‘scb’, ‘scf’, ‘schb’, ‘scm’, ‘scs’] If no value is given the default is scsrvy for srvy data, and scb for brst data.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.time_clip (
bool
) – Data will be clipped to the exact trange specified by the trange keyword.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.notplot (
bool
) – If True, then data are returned in a hash table instead of being stored in tplot variables (useful for debugging, and access to multi-dimensional data products)available (
bool
) – If True, simply return the available data files (without downloading) for the requested paramtersno_update (
bool
) – Set this flag to preserve the original data. if not set and newer data is found the existing data will be overwrittencdf_version (
str
) – Specify a specific CDF version # to load (e.g., cdf_version=’4.3.0’)min_version (
str
) – Specify a minimum CDF version # to loadlatest_version (
bool
) – Only grab the latest CDF version in the requested time intervalmajor_version (
bool
) – Only open the latest major CDF version (e.g., X in vX.Y.Z) in the requested time intervalalways_prompt (
bool
) – Set this keyword to always prompt for the user’s username and password; useful if you accidently save an incorrect password, or if your SDC password has changedspdf (
bool
) – If True, download the data from the SPDF instead of the SDC
- Returns
List of tplot variables created.
SCM Example
import pyspedas
from pytplot import tplot
pyspedas.mms.scm(trange=['2015-10-16/13:06', '2015-10-16/13:07'], time_clip=True)
tplot('mms1_scm_acb_gse_scsrvy_srvy_l2')

Level 3 FGM+SCM Data (FSM)
- pyspedas.mms.fsm(*args, **kwargs)
This function loads FSM data into tplot variables
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – list of probes, valid values for MMS probes are [‘1’,’2’,’3’,’4’].data_rate (
str
orlist
ofstr
) – the current instrument data rate for FSM is ‘brst’level (
str
) – indicates level of data processing. the default if no level is specified is ‘l2’datatype (
str
orlist
ofstr
) – Valid datatype for FSM is: 8khzget_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.time_clip (
bool
) – Data will be clipped to the exact trange specified by the trange keyword.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.notplot (
bool
) – If True, then data are returned in a hash table instead of being stored in tplot variables (useful for debugging, and access to multi-dimensional data products)available (
bool
) – If True, simply return the available data files (without downloading) for the requested paramtersno_update (
bool
) – Set this flag to preserve the original data. if not set and newer data is found the existing data will be overwrittencdf_version (
str
) – Specify a specific CDF version # to load (e.g., cdf_version=’4.3.0’)min_version (
str
) – Specify a minimum CDF version # to loadlatest_version (
bool
) – Only grab the latest CDF version in the requested time intervalmajor_version (
bool
) – Only open the latest major CDF version (e.g., X in vX.Y.Z) in the requested time intervalalways_prompt (
bool
) – Set this keyword to always prompt for the user’s username and password; useful if you accidently save an incorrect password, or if your SDC password has changedspdf (
bool
) – If True, download the data from the SPDF instead of the SDC
- Returns
List of tplot variables created.
FSM Example
import pyspedas
from pytplot import tplot
pyspedas.mms.fsm(trange=['2015-10-16/13:06', '2015-10-16/13:07'], time_clip=True)
tplot(['mms1_fsm_b_mag_brst_l3', 'mms1_fsm_b_gse_brst_l3'])

Electric field Double Probe (EDP)
- pyspedas.mms.edp(*args, **kwargs)
This function loads EDP data into tplot variables
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – list of probes, valid values for MMS probes are [‘1’,’2’,’3’,’4’].data_rate (
str
orlist
ofstr
) – instrument data rates for EDP include [‘brst’, ‘fast’, ‘slow’, ‘srvy’]. The default is ‘fast’.level (
str
) – indicates level of data processing. the default if no level is specified is ‘l2’datatype (
str
orlist
ofstr
) – Valid datatypes for EDP are: [‘dce’, ‘dcv’, ‘ace’, ‘hmfe’]; default is ‘dce’get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.time_clip (
bool
) – Data will be clipped to the exact trange specified by the trange keyword.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.notplot (
bool
) – If True, then data are returned in a hash table instead of being stored in tplot variables (useful for debugging, and access to multi-dimensional data products)available (
bool
) – If True, simply return the available data files (without downloading) for the requested paramtersno_update (
bool
) – Set this flag to preserve the original data. if not set and newer data is found the existing data will be overwrittencdf_version (
str
) – Specify a specific CDF version # to load (e.g., cdf_version=’4.3.0’)min_version (
str
) – Specify a minimum CDF version # to loadlatest_version (
bool
) – Only grab the latest CDF version in the requested time intervalmajor_version (
bool
) – Only open the latest major CDF version (e.g., X in vX.Y.Z) in the requested time intervalalways_prompt (
bool
) – Set this keyword to always prompt for the user’s username and password; useful if you accidently save an incorrect password, or if your SDC password has changedspdf (
bool
) – If True, download the data from the SPDF instead of the SDC
- Returns
List of tplot variables created.
EDP Example
import pyspedas
from pytplot import tplot
pyspedas.mms.edp(trange=['2015-10-16/13:06', '2015-10-16/13:07'], time_clip=True)
tplot('mms1_edp_dce_gse_fast_l2')

Electron Drift Instrument (EDI)
- pyspedas.mms.edi(*args, **kwargs)
This function loads EDI data into tplot variables
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – list of probes, valid values for MMS probes are [‘1’,’2’,’3’,’4’].data_rate (
str
orlist
ofstr
) – instrument data rates for EDI include [‘brst’, ‘fast’, ‘slow’, ‘srvy’]. The default is ‘srvy’.level (
str
) – indicates level of data processing. the default if no level is specified is ‘l2’datatype (
str
orlist
ofstr
) – Valid datatypes for EDI are: [‘efield’, ‘amb’]; default is ‘efield’get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.time_clip (
bool
) – Data will be clipped to the exact trange specified by the trange keyword.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.notplot (
bool
) – If True, then data are returned in a hash table instead of being stored in tplot variables (useful for debugging, and access to multi-dimensional data products)available (
bool
) – If True, simply return the available data files (without downloading) for the requested paramtersno_update (
bool
) – Set this flag to preserve the original data. if not set and newer data is found the existing data will be overwrittencdf_version (
str
) – Specify a specific CDF version # to load (e.g., cdf_version=’4.3.0’)min_version (
str
) – Specify a minimum CDF version # to loadlatest_version (
bool
) – Only grab the latest CDF version in the requested time intervalmajor_version (
bool
) – Only open the latest major CDF version (e.g., X in vX.Y.Z) in the requested time intervalalways_prompt (
bool
) – Set this keyword to always prompt for the user’s username and password; useful if you accidently save an incorrect password, or if your SDC password has changedspdf (
bool
) – If True, download the data from the SPDF instead of the SDC
- Returns
List of tplot variables created.
EDI Example
import pyspedas
from pytplot import tplot
pyspedas.mms.edi(trange=['2016-10-16/21:00', '2016-10-16/22:00'], time_clip=True)
tplot(['mms1_edi_vdrift_gse_srvy_l2', 'mms1_edi_e_gse_srvy_l2'])

Fly’s Eye Energetic Particle Sensor (FEEPS)
- pyspedas.mms.feeps(*args, **kwargs)
This function loads FEEPS data into tplot variables
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – list of probes, valid values for MMS probes are [‘1’,’2’,’3’,’4’].data_rate (
str
orlist
ofstr
) – instrument data rates for FEEPS include [‘brst’, ‘srvy’]. The default is ‘srvy’.level (
str
) – indicates level of data processing. the default if no level is specified is ‘l2’datatype (
str
orlist
ofstr
) –- Valid datatypes for FEEPS are:
L2, L1b: [‘electron’, ‘ion’] L1a: [‘electron-bottom’, ‘electron-top’, ‘ion-bottom’, ‘ion-top’]
get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.time_clip (
bool
) – Data will be clipped to the exact trange specified by the trange keyword.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.notplot (
bool
) – If True, then data are returned in a hash table instead of being stored in tplot variables (useful for debugging, and access to multi-dimensional data products)available (
bool
) – If True, simply return the available data files (without downloading) for the requested paramtersno_update (
bool
) – Set this flag to preserve the original data. if not set and newer data is found the existing data will be overwrittencdf_version (
str
) – Specify a specific CDF version # to load (e.g., cdf_version=’4.3.0’)min_version (
str
) – Specify a minimum CDF version # to loadlatest_version (
bool
) – Only grab the latest CDF version in the requested time intervalmajor_version (
bool
) – Only open the latest major CDF version (e.g., X in vX.Y.Z) in the requested time intervalalways_prompt (
bool
) – Set this keyword to always prompt for the user’s username and password; useful if you accidently save an incorrect password, or if your SDC password has changedspdf (
bool
) – If True, download the data from the SPDF instead of the SDC
- Returns
List of tplot variables created.
FEEPS Example
import pyspedas
from pytplot import tplot
pyspedas.mms.feeps(trange=['2015-10-16', '2015-10-17'])
tplot('mms1_epd_feeps_srvy_l2_electron_intensity_omni_spin')

Energetic Ion Spectrometer (EIS)
- pyspedas.mms.eis(*args, **kwargs)
This function loads EIS data into tplot variables
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – list of probes, valid values for MMS probes are [‘1’,’2’,’3’,’4’].data_rate (
str
orlist
ofstr
) – instrument data rates for EIS include [‘brst’, ‘srvy’]. The default is ‘srvy’.level (
str
) – indicates level of data processing. the default if no level is specified is ‘l2’datatype (
str
orlist
ofstr
) – Valid datatypes for EIS are: [‘extof’, ‘phxtof’, and ‘electronenergy’]; default is ‘extof’get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.time_clip (
bool
) – Data will be clipped to the exact trange specified by the trange keyword.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.notplot (
bool
) – If True, then data are returned in a hash table instead of being stored in tplot variables (useful for debugging, and access to multi-dimensional data products)available (
bool
) – If True, simply return the available data files (without downloading) for the requested paramtersno_update (
bool
) – Set this flag to preserve the original data. if not set and newer data is found the existing data will be overwrittencdf_version (
str
) – Specify a specific CDF version # to load (e.g., cdf_version=’4.3.0’)min_version (
str
) – Specify a minimum CDF version # to loadlatest_version (
bool
) – Only grab the latest CDF version in the requested time intervalmajor_version (
bool
) – Only open the latest major CDF version (e.g., X in vX.Y.Z) in the requested time intervalalways_prompt (
bool
) – Set this keyword to always prompt for the user’s username and password; useful if you accidently save an incorrect password, or if your SDC password has changedspdf (
bool
) – If True, download the data from the SPDF instead of the SDC
- Returns
List of tplot variables created.
EIS Example
import pyspedas
from pytplot import tplot
pyspedas.mms.eis(trange=['2015-10-16', '2015-10-17'])
tplot(['mms1_epd_eis_srvy_l2_extof_proton_flux_omni', 'mms1_epd_eis_srvy_l2_extof_proton_flux_omni_spin'])

Active Spacecraft Potential Control (ASPOC)
- pyspedas.mms.aspoc(*args, **kwargs)
This function loads ASPOC data into tplot variables
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – list of probes, valid values for MMS probes are [‘1’,’2’,’3’,’4’].data_rate (
str
orlist
ofstr
) – instrument data rates for ASPOC include ‘srvy’, ‘sitl’. The default is ‘srvy’.level (
str
) – indicates level of data processing. the default if no level is specified is ‘l2’datatype (
str
orlist
ofstr
) – Valid datatypes for ASPOC are: [‘asp1’, ‘asp2’, ‘aspoc’]; default is ‘aspoc’get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.time_clip (
bool
) – Data will be clipped to the exact trange specified by the trange keyword.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.notplot (
bool
) – If True, then data are returned in a hash table instead of being stored in tplot variables (useful for debugging, and access to multi-dimensional data products)available (
bool
) – If True, simply return the available data files (without downloading) for the requested paramtersno_update (
bool
) – Set this flag to preserve the original data. if not set and newer data is found the existing data will be overwrittencdf_version (
str
) – Specify a specific CDF version # to load (e.g., cdf_version=’4.3.0’)min_version (
str
) – Specify a minimum CDF version # to loadlatest_version (
bool
) – Only grab the latest CDF version in the requested time intervalmajor_version (
bool
) – Only open the latest major CDF version (e.g., X in vX.Y.Z) in the requested time intervalalways_prompt (
bool
) – Set this keyword to always prompt for the user’s username and password; useful if you accidently save an incorrect password, or if your SDC password has changedspdf (
bool
) – If True, download the data from the SPDF instead of the SDC
- Returns
List of tplot variables created.
ASPOC Example
import pyspedas
from pytplot import tplot
pyspedas.mms.aspoc(trange=['2015-10-16', '2015-10-17'])
tplot(['mms1_aspoc_ionc_l2', 'mms1_asp1_ionc_l2', 'mms1_asp2_ionc_l2'])

Fast Plasma Investigation (FPI)
- pyspedas.mms.fpi(*args, **kwargs)
This function loads FPI data into tplot variables
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – list of probes, valid values for MMS probes are [‘1’,’2’,’3’,’4’].data_rate (
str
orlist
ofstr
) – instrument data rates for FPI include ‘brst’, ‘fast’. The default is ‘srvy’.level (
str
) – indicates level of data processing. the default if no level is specified is ‘l2’datatype (
str
orlist
ofstr
) –- Valid datatypes for FPI are:
‘des-moms’, ‘dis-moms’ (default) ‘des-dist’, ‘dis-dist’
get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.time_clip (
bool
) – Data will be clipped to the exact trange specified by the trange keyword.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.center_measurement (
bool
) – If True, the CDF epoch variables are time-shifted to the middle of the accumulation interval by their DELTA_PLUS_VAR and DELTA_MINUS_VAR variable attributesnotplot (
bool
) – If True, then data are returned in a hash table instead of being stored in tplot variables (useful for debugging, and access to multi-dimensional data products)available (
bool
) – If True, simply return the available data files (without downloading) for the requested paramtersno_update (
bool
) – Set this flag to preserve the original data. if not set and newer data is found the existing data will be overwrittencdf_version (
str
) – Specify a specific CDF version # to load (e.g., cdf_version=’4.3.0’)min_version (
str
) – Specify a minimum CDF version # to loadlatest_version (
bool
) – Only grab the latest CDF version in the requested time intervalmajor_version (
bool
) – Only open the latest major CDF version (e.g., X in vX.Y.Z) in the requested time intervalalways_prompt (
bool
) – Set this keyword to always prompt for the user’s username and password; useful if you accidently save an incorrect password, or if your SDC password has changedspdf (
bool
) – If True, download the data from the SPDF instead of the SDC
- Returns
List of tplot variables created.
FPI Example
import pyspedas
from pytplot import tplot
pyspedas.mms.fpi(trange=['2015-10-16', '2015-10-17'], datatype='des-moms')
tplot(['mms1_des_energyspectr_omni_fast', 'mms1_des_bulkv_gse_fast', 'mms1_des_numberdensity_fast'])

Hot Plasma Composition Analyzer (HPCA)
- pyspedas.mms.hpca(*args, **kwargs)
This function loads HPCA data into tplot variables
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – list of probes, valid values for MMS probes are [‘1’,’2’,’3’,’4’].data_rate (
str
orlist
ofstr
) – instrument data rates for HPCA include ‘brst’, ‘srvy’. The default is ‘srvy’.level (
str
) – indicates level of data processing. the default if no level is specified is ‘l2’datatype (
str
orlist
ofstr
) – Valid datatypes for HPCA are ‘moments’ and ‘ion’; the default is ‘moments’get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)time_clip (
bool
) – Data will be clipped to the exact trange specified by the trange keyword.suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.center_measurement (
bool
) – If True, the CDF epoch variables are time-shifted to the middle of the accumulation interval by their DELTA_PLUS_VAR and DELTA_MINUS_VAR variable attributesnotplot (
bool
) – If True, then data are returned in a hash table instead of being stored in tplot variables (useful for debugging, and access to multi-dimensional data products)available (
bool
) – If True, simply return the available data files (without downloading) for the requested paramtersno_update (
bool
) – Set this flag to preserve the original data. if not set and newer data is found the existing data will be overwrittencdf_version (
str
) – Specify a specific CDF version # to load (e.g., cdf_version=’4.3.0’)min_version (
str
) – Specify a minimum CDF version # to loadlatest_version (
bool
) – Only grab the latest CDF version in the requested time intervalmajor_version (
bool
) – Only open the latest major CDF version (e.g., X in vX.Y.Z) in the requested time intervalalways_prompt (
bool
) – Set this keyword to always prompt for the user’s username and password; useful if you accidently save an incorrect password, or if your SDC password has changedspdf (
bool
) – If True, download the data from the SPDF instead of the SDC
- Returns
List of tplot variables created.
HPCA Example
import pyspedas
from pytplot import tplot
pyspedas.mms.hpca(trange=['2015-10-16', '2015-10-17'], datatype='moments')
tplot(['mms1_hpca_hplus_number_density', 'mms1_hpca_hplus_ion_bulk_velocity', 'mms1_hpca_hplus_scalar_temperature'])

Magnetic Ephemeris Coordinates (MEC)
- pyspedas.mms.mec(*args, **kwargs)
This function loads MEC data into tplot variables
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – list of probes, valid values for MMS probes are [‘1’,’2’,’3’,’4’].data_rate (
str
orlist
ofstr
) – instrument data rates for MEC include [‘brst’, ‘srvy’]. The default is ‘srvy’.level (
str
) – indicates level of data processing. the default if no level is specified is ‘l2’datatype (
str
orlist
ofstr
) – Valid datatypes for MEC are: [‘ephts04d’, ‘epht89q’, ‘epht89d’]; default is ‘epht89q’get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.time_clip (
bool
) – Data will be clipped to the exact trange specified by the trange keyword.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.notplot (
bool
) – If True, then data are returned in a hash table instead of being stored in tplot variables (useful for debugging, and access to multi-dimensional data products)available (
bool
) – If True, simply return the available data files (without downloading) for the requested paramtersno_update (
bool
) – Set this flag to preserve the original data. if not set and newer data is found the existing data will be overwrittencdf_version (
str
) – Specify a specific CDF version # to load (e.g., cdf_version=’4.3.0’)min_version (
str
) – Specify a minimum CDF version # to loadlatest_version (
bool
) – Only grab the latest CDF version in the requested time intervalmajor_version (
bool
) – Only open the latest major CDF version (e.g., X in vX.Y.Z) in the requested time intervalalways_prompt (
bool
) – Set this keyword to always prompt for the user’s username and password; useful if you accidently save an incorrect password, or if your SDC password has changedspdf (
bool
) – If True, download the data from the SPDF instead of the SDC
Notes
The default datatype was changed to ‘epht89q’ on 15Nov2021. There are sometimes issues with creating the Tsyganenko 04 data products, which leads to the ‘epht04d’ files not being available. The ‘epht89d’ files contain the same ephemeris data - the only difference are the data products that rely on the field model.
- Returns
List of tplot variables created.
MEC Example
import pyspedas
from pytplot import tplot
pyspedas.mms.mec(trange=['2015-10-16', '2015-10-17'])
tplot(['mms1_mec_r_gsm', 'mms1_mec_v_gsm'])

- pyspedas.mms.state(*args, **kwargs)
This function loads the state (ephemeris and attitude) data from the ASCII files into tplot variables
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – list of probes, valid values for MMS probes are [‘1’,’2’,’3’,’4’].level (
str
) – indicates level of data (options: ‘def’ (definitive), ‘pred’ (predicted); default: def)datatypes (
str
orlist
ofstr
) – no datatype for state data (options: ‘pos’, ‘vel’, ‘spinras’, ‘spindec’)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.no_update (
bool
) – Set this flag to preserve the original data. if not set and newer data is found the existing data will be overwritten
- Returns
List of tplot variables created.
State Example
import pyspedas
from pytplot import tplot
pyspedas.mms.state(trange=['2020-12-16', '2020-12-17'])
tplot(['mms1_defeph_pos', 'mms1_defeph_vel'])

OMNI
The routines in this module can be used to load OMNI (Combined 1AU IP Data; Magnetic and Solar Indices) data.
- pyspedas.omni.data(trange=['2013-11-5', '2013-11-6'], datatype='1min', level='hro2', suffix='', get_support_data=False, get_ignore_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=True)
This function loads OMNI (Combined 1AU IP Data; Magnetic and Solar Indices) data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]level (
str
) – Data level; valid options: hro, hro2datatype (
str
) – Data type; valid options: 1min, 5min, hourly (1 hour)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Polar Orbiting Environmental Satellites (POES)
The routines in this module can be used to load data from the POES mission.
Space Environment Monitor (SEM)
- pyspedas.poes.sem(trange=['2018-11-5', '2018-11-6'], probe=['noaa19'], datatype='*', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads POES Space Environment Monitor (SEM) data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Polar
The routines in this module can be used to load data from the Polar mission.
Magnetic Field Experiment (MFE)
- pyspedas.polar.mfe(trange=['2003-10-28', '2003-10-29'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Magnetic Field Experiment
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Electric Fields Instrument (EFI)
- pyspedas.polar.efi(trange=['2003-10-28', '2003-10-29'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Electric Fields Instrument
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Plasma Wave Instrument (PWI)
- pyspedas.polar.pwi(trange=['1997-01-03', '1997-01-04'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Plasma Wave Instrument
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Hot Plasma Analyzer Experiment (HYDRA)
- pyspedas.polar.hydra(trange=['2003-10-28', '2003-10-29'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Hot Plasma Analyzer Experiment
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Thermal Ion Dynamics Experiment (TIDE)
- pyspedas.polar.tide(trange=['1997-01-03', '1997-01-04'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Thermal Ion Dynamics Experiment / Plasma Source Investigation
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Toroidal Imaging Mass Angle Spectrograph (TIMAS)
- pyspedas.polar.timas(trange=['1997-01-03', '1997-01-04'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Toroidal Imaging Mass Angle Spectrograph
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Charge and Mass Magnetospheric Ion Composition Experiment (CAMMICE)
- pyspedas.polar.cammice(trange=['2003-10-28', '2003-10-29'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Charge and Mass Magnetospheric Ion Composition Experiment
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Comprehensive Energetic Particle-Pitch Angle Distribution (CEPPAD)
- pyspedas.polar.ceppad(trange=['2003-10-28', '2003-10-29'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Comprehensive Energetic Particle-Pitch Angle Distribution
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Ultraviolet Imager (UVI)
- pyspedas.polar.uvi(trange=['2003-10-28', '2003-10-29'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Ultraviolet Imager
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Visible Imaging System (VIS)
- pyspedas.polar.vis(trange=['2003-10-28', '2003-10-29'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Visible Imaging System
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Polar Ionospheric X-ray Imaging Experiment (PIXIE)
- pyspedas.polar.pixie(trange=['1997-01-03', '1997-01-04'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Polar Ionospheric X-ray Imaging Experiment
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Orbit data
- pyspedas.polar.orbit(trange=['2003-10-28', '2003-10-29'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads Polar orbit data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Parker Solar Probe (PSP)
The routines in this module can be used to load data from the Parker Solar Probe mission.
Electromagnetic Fields Investigation (FIELDS)
- pyspedas.psp.fields(trange=['2018-11-5', '2018-11-6'], datatype='mag_rtn', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads Parker Solar Probe FIELDS data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Solar Probe Cup (SPC)
- pyspedas.psp.spc(trange=['2018-11-5', '2018-11-6'], datatype='l3i', level='l3', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads Parker Solar Probe Solar Probe Cup data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
SWEAP/SPAN-e
- pyspedas.psp.spe(trange=['2018-11-5', '2018-11-6'], datatype='spa_sf1_32e', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads Parker Solar Probe SWEAP/SPAN-e data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
SWEAP/SPAN-i
- pyspedas.psp.spi(trange=['2018-11-5', '2018-11-6'], datatype='spi_sf0a_mom_inst', level='l3', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads Parker Solar Probe SWEAP/SPAN-i data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
IS☉IS/EPI-Hi
- pyspedas.psp.epihi(trange=['2018-11-5', '2018-11-6'], datatype='let1_rates1h', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads Parker Solar Probe ISoIS/EPI-Hi data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
IS☉IS/EPI-Lo
- pyspedas.psp.epilo(trange=['2018-11-5', '2018-11-6'], datatype='pe', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads Parker Solar Probe ISoIS/EPI-Lo data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
IS☉IS/EPI (merged summary data)
- pyspedas.psp.epi(trange=['2018-11-5', '2018-11-6'], datatype='summary', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads Parker Solar Probe ISoIS/EPI (merged summary) data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Solar Orbiter (SOLO)
The routines in this module can be used to load data from the Solar Orbiter mission.
Magnetometer (MAG)
- pyspedas.solo.mag(trange=['2020-06-01', '2020-06-02'], datatype='rtn-normal', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Magnetometer (MAG)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) –- Data type; Valid options:
‘rtn-normal’: RTN Coordinates in Normal Mode ‘rtn-normal-1-minute’: Same as above, but at 1-min resolution ‘rtn-burst’: RTN Coordinates in Burst Mode ‘srf-normal’: Spacecraft Reference Frame in Normal Mode ‘srf-burst’: Spacecraft Reference Frame in Burst Mode
level (
str
) – Data level (default: l2)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Energetic Particle Detector (EPD)
- pyspedas.solo.epd(trange=['2020-06-14', '2020-06-15'], datatype='step', mode='hcad', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Energetic Particle Detector (EPD)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:mode (
str
) – EPD mode; Valid options:level (
str
) – Data level (default: l2)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Radio and Plasma Waves (RPW)
- pyspedas.solo.rpw(trange=['2020-06-15', '2020-06-16'], datatype='hfr-surv', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Radio and Plasma Waves (RPW) instrument
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options: Level 1:‘hfr-surv’, ‘lfr-surv-asm’, ‘lfr-surv-bp1’, ‘lfr-surv-bp2’, ‘lfr-surv-cwf’, ‘lfr-surv-swf’, ‘tds-surv-hist1d’, ‘tds-surv-hist2d’, ‘tds-surv-mamp’, ‘tds-surv-rswf’, ‘tds-surv-stat’, ‘tds-surv-tswf’, ‘tnr-surv’ (see below for definitions)
- Level 2:
- High Frequency Receiver (HFR):
‘hfr-surv’: High Frequency Receiver (HFR) Data in Survey Mode
- Low Frequency Receiver (LFR):
‘lfr-surv-asm’: Averaged Spectral Matrix (ASM) Data in Survey Mode ‘lfr-surv-bp1’: Basic Parameters Set 1 (BP1) Data in Survey Mode ‘lfr-surv-bp2’: Basic Parameter Set 2 (BP2) Data in Survey Mode ‘lfr-surv-cwf-b’: Continuous Magnetic Waveform (CWF-B) in Survey Mode ‘lfr-surv-cwf-e’: Continuous Electric Waveform (CWF-E) in Survey Mode ‘lfr-surv-swf-b’: Snapshot Magnetic Waveform (SWF-B) in Survey Mode ‘lfr-surv-swf-e’: Snapshot Electric Waveform (SWF-E) in Survey Mode
- Time Domain Sampler (TDS):
‘tds-surv-hist1d’: Histogram Set 1 (HIST1D) Data in Survey Mode ‘tds-surv-hist2d’: Histogram Set 2 (HIST2D) Data in Survey Mode ‘tds-surv-mamp’: Maximum Amplitude (MAMP) Data in Survey Mode ‘tds-surv-rswf-b’: Regular Snapshot Waveform (RSWF) Magnetic Field Data in Survey Mode ‘tds-surv-rswf-e’: Regular Snapshot Waveform (RSWF) Electric Field Data in Survey Mode ‘tds-surv-stat’: Statistical (STAT) Data in Survey Mode ‘tds-surv-tswf-b’: Triggered Snapshot Magnetic Waveform (TSWF-B) in Survey Mode ‘tds-surv-tswf-e’: Triggered Snapshot Electric Waveform (TSWF-E) in Survey Mode
- Level 3:
‘bia-density’: Plasma density derived from probe-to-spacecraft potential and electron plasma frequency ‘bia-density-10-seconds’: same as above, but median value over 10 s interval ‘bia-efield-10-seconds’: Electric field vector in SRF. Median value over 10 s interval ‘bia-scpot-10-seconds’: Spacecraft potential with respect to plasma. Median value over 10 s interval ‘tnr-fp’: Plasma frequency value derived by the plasma peak tracking (Thermal Noise Receiver (TNR))
level (
str
) – Data level (default: l2)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Solar Wind Plasma Analyser (SWA)
- pyspedas.solo.swa(trange=['2020-07-22', '2020-07-23'], datatype='pas-eflux', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Solar Wind Plasma Analyser (SWA)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:level (
str
) – Data level (default: l2)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Solar Terrestrial Relations Observatory (STEREO)
The routines in this module can be used to load data from the STEREO mission.
Magnetometer (MAG)
- pyspedas.stereo.mag(trange=['2013-11-5', '2013-11-6'], probe='a', datatype='8hz', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the magnetometer
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options: 8hz, 32hzsuffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
PLAsma and SupraThermal Ion Composition (PLASTIC)
- pyspedas.stereo.plastic(trange=['2013-11-5', '2013-11-6'], probe='a', datatype='1min', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the PLASTIC instrument
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options: 1minsuffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Time History of Events and Macroscale Interactions during Substorms (THEMIS)
The routines in this module can be used to load data from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission.
Fluxgate Magnetometer (FGM)
- pyspedas.themis.fgm(trange=['2007-03-23', '2007-03-24'], probe='c', level='l2', suffix='', get_support_data=False, varformat=None, coord=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads Fluxgate magnetometer (FGM) data
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
probe – str or list of str Spacecraft probe letter(s) (‘a’, ‘b’, ‘c’, ‘d’ and/or ‘e’)
level – str or list of str Data type; Valid options: ‘l1’, ‘l2’
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
coord – str Coordinate system
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables. If set, this function returns a list of the files downloaded.
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Search Coil Magnetometer (SCM)
- pyspedas.themis.scm(trange=['2007-03-23', '2007-03-24'], probe='c', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads Search-coil magnetometer (SCM) data
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
probe – str or list of str Spacecraft probe letter(s) (‘a’, ‘b’, ‘c’, ‘d’ and/or ‘e’)
level – str Data type; Valid options: ‘l1’, ‘l2’
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Electric Field Instrument (EFI)
- pyspedas.themis.efi(trange=['2007-03-23', '2007-03-24'], probe='c', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads Electric Field Instrument (EFI) data
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
probe – str or list of str Spacecraft probe letter(s) (‘a’, ‘b’, ‘c’, ‘d’ and/or ‘e’)
level – str Data type; Valid options: ‘l1’, ‘l2’
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Electrostatic Analyzer (ESA)
- pyspedas.themis.esa(trange=['2007-03-23', '2007-03-24'], probe='c', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads Electrostatic Analyzer (ESA) data
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
probe – str or list of str Spacecraft probe letter(s) (‘a’, ‘b’, ‘c’, ‘d’ and/or ‘e’)
level – str Data type; Valid options: ‘l1’, ‘l2’
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Solid State Telescope (SST)
- pyspedas.themis.sst(trange=['2007-03-23', '2007-03-24'], probe='c', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads Solid State Telescope (SST) data
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
probe – str or list of str Spacecraft probe letter(s) (‘a’, ‘b’, ‘c’, ‘d’ and/or ‘e’)
level – str Data type; Valid options: ‘l1’, ‘l2’
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
State
- pyspedas.themis.state(trange=['2007-03-23', '2007-03-24'], probe='c', level='l1', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads THEMIS state data
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
probe – str or list of str Spacecraft probe letter(s) (‘a’, ‘b’, ‘c’, ‘d’ and/or ‘e’)
level – str Data type; Valid options: ‘l1’
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS)
The routines in this module can be used to load data from the TWINS mission.
Imager
- pyspedas.twins.imager(trange=['2018-11-5', '2018-11-6'], probe='1', datatype='', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads TWINS imager data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Lyman-alpha Detector (LAD)
- pyspedas.twins.lad(trange=['2018-11-5', '2018-11-6'], probe='1', datatype='', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the LAD instrument
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Ephemeris
- pyspedas.twins.ephemeris(trange=['2018-11-5', '2018-11-6'], probe='1', datatype='or', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads TWINS ephemeris data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Ulysses
The routines in this module can be used to load data from the Ulysses mission.
Magnetic field (VHM)
- pyspedas.ulysses.vhm(trange=['2009-01-01', '2009-01-02'], datatype='1min', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=True)
This function loads data from the VHM/FGM experiment from the Ulysses mission
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:level (
str
) – Data level; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Solar wind plasma (SWOOPS)
- pyspedas.ulysses.swoops(trange=['2009-01-01', '2009-01-02'], datatype='bai_m0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the SWOOPS experiment from the Ulysses mission
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:level (
str
) – Data level; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Solar wind ion composition (SWICS)
- pyspedas.ulysses.swics(trange=['2009-01-01', '2009-01-02'], datatype='scs_m1', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the SWICS experiment from the Ulysses mission
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:level (
str
) – Data level; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Energetic particles (EPAC)
- pyspedas.ulysses.epac(trange=['1996-01-01', '1996-01-02'], datatype='epac_m1', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the EPAC experiment from the Ulysses mission
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:level (
str
) – Data level; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Low-energy ions and electrons (HI-SCALE)
- pyspedas.ulysses.hiscale(trange=['2003-01-01', '2003-01-02'], datatype='lmde_m1', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the HI-SCALE experiment from the Ulysses mission
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:level (
str
) – Data level; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Cosmic rays and solar particles (COSPIN)
- pyspedas.ulysses.cospin(trange=['2003-01-01', '2003-01-02'], datatype='het', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the COSPIN experiment from the Ulysses mission
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:level (
str
) – Data level; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Radio and plasma waves (URAP)
- pyspedas.ulysses.urap(trange=['2003-01-01', '2003-01-02'], datatype='pfrp_m0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the URAP experiment from the Ulysses mission
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:level (
str
) – Data level; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Solar X-rays and cosmic gamma-ray bursts (GRB)
- pyspedas.ulysses.grb(trange=['2003-01-01', '2003-01-02'], datatype='grb_m0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the GRB experiment from the Ulysses mission
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:level (
str
) – Data level; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Van Allen Probes (RBSP)
The routines in this module can be used to load data from the Van Allen Probes mission.
Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS)
- pyspedas.rbsp.emfisis(trange=['2018-11-5', '2018-11-6'], probe='a', datatype='magnetometer', level='l3', cadence='4sec', coord='sm', wavetype='waveform', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrument
- For information on the EMFISIS data products, see:
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – Spacecraft probe name (‘a’ or ‘b’); default: acadence (
str
) – Data cadence (default: 4sec); other options: ‘1sec’, ‘hires’coord (
str
) – Data coordinate system (default: sm)level (
str
) – Data level; options: ‘l1’, ‘l2’, ‘l3’, l4’datatype (
str
) – Data type; valid options: Level 1:‘magnetometer’ ‘hfr’ ‘housekeeping’ ‘sc-hk’ ‘spaceweather’ ‘wfr’ ‘wna’
- Level 2:
‘magnetometer’ ‘wfr’ ‘hfr’ ‘housekeeping’
- Level 3:
‘magnetometer’
- Level 4:
‘density’ ‘wna-survey’
wavetype (
str
) –- Type of level 2 waveform data; valid options:
For WFR data: ‘waveform’ (default) ‘waveform-continuous-burst’ ‘spectral-matrix’ ‘spectral-matrix-diagonal’ ‘spectral-matrix-diagonal-merged’
For HFR data: ‘waveform’ ‘spectra’ ‘spectra-burst’ ‘spectra-merged’
- For descriptions of these data, see:
suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Electric Field and Waves Suite (EFW)
- pyspedas.rbsp.efw(trange=['2015-11-5', '2015-11-6'], probe='a', datatype='spec', level='l3', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Electric Field and Waves Suite (EFW)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – Spacecraft probe name (‘a’ or ‘b’); default: adatatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE)
- pyspedas.rbsp.rbspice(trange=['2018-11-5', '2018-11-6'], probe='a', datatype='tofxeh', level='l3', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – Spacecraft probe name (‘a’ or ‘b’); default: adatatype (
str
) – Data type (default: tofxeh); Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Energetic Particle, Composition, and Thermal Plasma Suite (ECT)
- pyspedas.rbsp.mageis(trange=['2015-11-5', '2015-11-6'], probe='a', datatype='', level='l3', rel='rel04', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Energetic Particle, Composition, and Thermal Plasma Suite (ECT)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – Spacecraft probe name (‘a’ or ‘b’); default: adatatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
- pyspedas.rbsp.hope(trange=['2015-11-5', '2015-11-6'], probe='a', datatype='moments', level='l3', rel='rel04', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Energetic Particle, Composition, and Thermal Plasma Suite (ECT)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – Spacecraft probe name (‘a’ or ‘b’); default: adatatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
- pyspedas.rbsp.rept(trange=['2015-11-5', '2015-11-6'], probe='a', datatype='', level='l3', rel='rel03', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Energetic Particle, Composition, and Thermal Plasma Suite (ECT)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – Spacecraft probe name (‘a’ or ‘b’); default: adatatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Relativistic Proton Spectrometer (RPS)
- pyspedas.rbsp.rps(trange=['2015-11-5', '2015-11-6'], probe='a', datatype='rps-1min', level='l2', suffix='', get_support_data=True, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Relativistic Proton Spectrometer (RPS)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – Spacecraft probe name (‘a’ or ‘b’); default: adatatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Wind
The routines in this module can be used to load data from the Wind mission.
Magnetic Field Investigation (MFI)
- pyspedas.wind.mfi(trange=['2018-11-5', '2018-11-6'], datatype='h0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Fluxgate Magnetometer
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Solar Wind Experiment (SWE)
- pyspedas.wind.swe(trange=['2018-11-5', '2018-11-6'], datatype='h5', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the SWE instrument
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Radio and Plasma Waves (WAVES)
- pyspedas.wind.waves(trange=['2018-11-5', '2018-11-6'], datatype='h1', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads Radio/Plasma Wave (WAVES) data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
3D Plasma Analyzer (3DP)
- pyspedas.wind.threedp(trange=['1999-11-5', '1999-11-6'], datatype='3dp_emfits_e0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads 3DP data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Solar Wind and Suprathermal Ion Composition Experiment (SMS)
- pyspedas.wind.sms(trange=['1999-11-5', '1999-11-6'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Solar Wind and Suprathermal Ion Composition Instrument
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Orbit data
- pyspedas.wind.orbit(trange=['1999-11-5', '1999-11-6'], datatype='pre_or', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads orbit data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Returns
- Return type
List
oftplot variables created.
Analysis Tools
Average data
- pyspedas.avg_data(names, dt=None, width=60, noremainder=False, new_names=None, suffix=None, overwrite=None)
Get a new tplot variable with averaged data.
- Parameters
names (
str/list
ofstr
) – List of pytplot names.dt (
float
, optional) – Time window in seconds for averaging data. It can be less than 1 sec.width (
int
, optional) – Number of values for the averaging window. Default is 60 points (usually this means 60 seconds). If dt is set, then width is ignored.noremainder (
boolean
, optional) – If True, the remainter (last part of data) will not be included. If False. the remainter will be included.new_names (
str/list
ofstr
, optional) – List of new_names for pytplot variables. If not given, then a suffix is applied.suffix (
str
, optional) – A suffix to apply. Default is ‘-avg’.overwrite (
bool
, optional) – Replace the existing tplot name.
- Returns
- Return type
None.
Clean spikes
- pyspedas.clean_spikes(names, nsmooth=10, thresh=0.3, sub_avg=False, new_names=None, suffix=None, overwrite=None)
Clean spikes from data.
- Parameters
names (
str/list
ofstr
) – List of pytplot names.new_names (
str/list
ofstr
, optional) – List of new_names for pytplot variables. If not given, then a suffix is applied.suffix (
str
, optional) – A suffix to apply. Default is ‘-avg’.overwrite (
bool
, optional) – Replace the existing tplot name.nsmooth (
int
, optional) – the number of data points for smoothingthresh (
float
, optional) – threshold valuesub_avg (
bool
, optional) – if set, subtract the average value of the data prior to checking for spikes
- Returns
- Return type
None.
Cross products
- pyspedas.tcrossp(v1, v2, newname=None, return_data=False)
Dot products
- pyspedas.tdotp(variable1, variable2, newname=None)
Routine to calculate the dot product of two tplot variables containing arrays of vectors and storing the results in a tplot variable
Dynamic power spectra
- pyspedas.tdpwrspc(varname, newname=None, nboxpoints=256, nshiftpoints=128, binsize=3, nohanning=False, noline=False, notperhz=False, notmvariance=False)
Compute power spectra for a tplot variable.
- Parameters
varname (
str
) – Name of pytplot variable.newname (
str
, optional) – Name of new pytplot variable to save data to.nboxpoints (
int
, optional) – The number of points to use for the hanning window. The default is 256.nshiftpoints (
int
, optional) – The number of points to shift for each spectrum. The default is 128.binsize (
int
, optional) – Size for binning of the data along the frequency domain. The default is 3.nohanning (
bool
, optional) – If True, no hanning window is applied to the input. The default is False.noline (
bool
, optional) – If True, no straight line is subtracted. The default is False.notperhz (
bool
, optional) – If True, the output units are the square of the input units. The default is False.notmvariance (
bool
, optional) – If True, replace output spectrum for any windows that have variable. cadence with NaNs. The default is False.
- Returns
Name of new pytplot variable.
- Return type
- pyspedas.dpwrspc(time, quantity, nboxpoints=256, nshiftpoints=128, binsize=3, nohanning=False, noline=False, notperhz=False, notmvariance=False, tm_sensitivity=None)
Compute power spectra.
- Parameters
nboxpoints (
int
, optional) – The number of points to use for the hanning window. The default is 256.nshiftpoints (
int
, optional) – The number of points to shift for each spectrum. The default is 128.binsize (
int
, optional) – Size for binning of the data along the frequency domain. The default is 3.nohanning (
bool
, optional) – If True, no hanning window is applied to the input. The default is False.noline (
bool
, optional) – If True, no straight line is subtracted. The default is False.notperhz (
bool
, optional) – If True, the output units are the square of the input units. The default is False.notmvariance (
bool
, optional) – If True, replace output spectrum for any windows that have variable cadence with NaNs. The default is False.tm_sensitivity (
float
, optional) – If noTmVariance is set, this number controls how much of a dt anomaly is accepted. The default is None.
- Returns
Interpolation
- pyspedas.tinterpol(names, interp_to, method=None, newname=None, suffix=None)
Interpolate data to times in interp_to.
- Parameters
names (
str/list
ofstr
) – List of variables to interpolate.interp_to (
str
) –- String containing the variable
containing the time stamps to interpolate to
method (
str
, optional) – Interpolation method. Default is ‘linear’. Specifies the kind of interpolation as a string (‘linear’, ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘previous’, ‘next’) where ‘zero’, ‘slinear’, ‘quadratic’ and ‘cubic’ refer to a spline interpolation of zeroth, first, second or third order; ‘previous’ and ‘next’ simply return the previous or next value of the point) or as an integer specifying the order of the spline interpolator to use.newname (
str/list
ofstr
, optional) – List of new_names for pytplot variables. If ‘’, then pytplot variables are replaced. If not given, then a suffix is applied.suffix (
str
, optional) – A suffix to apply. Default is ‘-itrp’.
- Returns
- Return type
None.
Normalize vectors
- pyspedas.tnormalize(variable, newname=None, return_data=False)
Subtract average
- pyspedas.subtract_average(names, new_names=None, suffix=None, overwrite=None, median=None)
Subtracts the average or the median from data.
- Parameters
names (
str/list
ofstr
) – List of pytplot names.new_names (
str/list
ofstr
, optional) – List of new_names for pytplot variables. If not given, then a suffix is applied.suffix (
str
, optional) – A suffix to apply. Default is ‘-d’.overwrite (
bool
, optional) – If set, then pytplot variables are replaced.median (
float
, optional) – If it is 0 or not set, then it computes the mean. Otherwise, it computes the median.
- Returns
- Return type
None.
Subtract median
- pyspedas.subtract_median(names, new_names=None, suffix=None, overwrite=None)
Subtracts the median from data.
- Parameters
names (
str/list
ofstr
) – List of pytplot names.new_names (
str/list
ofstr
, optional) – List of new_names for pytplot variables. If not given, then a suffix is applied.suffix (
str
, optional) – A suffix to apply. Default is ‘-d’.overwrite (
bool
, optional) – If set, then pytplot variables are replaced.
- Returns
- Return type
None.
Wave polarization
- pyspedas.twavpol(tvarname, prefix='', nopfft=- 1, steplength=- 1, bin_freq=- 1)
Apply wavpol to a pytplot variable.
Creates multiple pytplot variables: ‘_powspec’,’_degpol’, ‘_waveangle’, ‘_elliptict’, ‘_helict’, ‘_pspec3_x’, ‘_pspec3_y’, ‘_pspec3_z’
- Parameters
tvarname (
string
) – Name of pytplot variable.prefix (
string
, optional) – Prefix for pytplot variables created.nopfft (
int
, optional) – Number of points in FFT. The default is 256.steplength (
int
, optional) – The amount of overlap between successive FFT intervals. The default is -1 which means nopfft/2.bin_freq (
int
, optional) – Number of bins in frequency domain. The default is 3.
- Returns
result – Returns 1 if completed successfully. Returns 0 if it encountered problems and exited.
- Return type
- pyspedas.analysis.twavpol.wavpol(ct, bx, by, bz, nopfft=256, steplength=- 1, bin_freq=3)
Perform polarisation analysis of Bx, By, Bz time series data.
- Parameters
- Returns
result (
tuple with 9 items
)powspec (
2-dim array
offloat
) – Wave power.degpol (
2-dim array
offloat
) – Degree of Polarisation.waveangle (
2-dim array
offloat
) – Wavenormal Angle.elliptict (
2-dim array
offloat
) – Ellipticity.helict (
2-dim array
offloat
) – Helicity.pspec3 (
3-dim array
offloat
) – Power spectra.err_flag (
bool
) – Error flag. The default is 0. Returns 1 if there are large number of batches and aborts.
Magnetic Field Models
The routines in this module can be used to calculate Tsyganenko magnetic field models using Sheng Tian’s implementation of the geopack library (https://github.com/tsssss/geopack).
Tsyganenko 89 (T89)
- pyspedas.geopack.tt89.tt89(pos_var_gsm, iopt=3, suffix='', igrf_only=False)
tplot wrapper for the functional interface to Sheng Tian’s implementation of the Tsyganenko 96 and IGRF model:
https://github.com/tsssss/geopack
- pos_gsm_tvar: str
tplot variable containing the position data (km) in GSM coordinates
T89 Example
# load some spacecraft position data
import pyspedas
pyspedas.mms.mec(trange=['2015-10-16', '2015-10-17'])
# calculate the field using the T89 model
from pyspedas.geopack.tt89 import tt89
tt89('mms1_mec_r_gsm')
tplot('mms1_mec_r_gsm_bt89')
Tsyganenko 96 (T96)
- pyspedas.geopack.tt96.tt96(pos_var_gsm, parmod=None, suffix='')
tplot wrapper for the functional interface to Sheng Tian’s implementation of the Tsyganenko 96 and IGRF model:
https://github.com/tsssss/geopack
- pos_gsm_tvar: str
tplot variable containing the position data (km) in GSM coordinates
- Parameters
parmod (
ndarray
) –- 10-element array (vs. time), but only the first 4 elements are used
solar wind pressure pdyn (nanopascals)
dst (nanotesla)
byimf (nanotesla)
bzimf (nanotesla)
suffix (
str
) – Suffix to append to the tplot output variable
- Returns
- Return type
Name
ofthe tplot variable containing the model data
T96 Example
# load some spacecraft position data
import pyspedas
pyspedas.mms.mec(trange=['2015-10-16', '2015-10-17'])
# calculate the field using the T96 model
from pyspedas.geopack.tt96 import tt96
tt96('mms1_mec_r_gsm', parmod=params)
tplot('mms1_mec_r_gsm_bt96')
Tsyganenko 2001 (T01)
- pyspedas.geopack.tt01.tt01(pos_var_gsm, parmod=None, suffix='')
tplot wrapper for the functional interface to Sheng Tian’s implementation of the Tsyganenko 2001 and IGRF model:
https://github.com/tsssss/geopack
- pos_gsm_tvar: str
tplot variable containing the position data (km) in GSM coordinates
- Parameters
parmod (
ndarray
) –- 10-element array (vs. time), but only the first 6 elements are used
solar wind pressure pdyn (nanopascals),
dst (nanotesla)
byimf (nanotesla)
bzimf (nanotesla)
g1-index
g2-index (see Tsyganenko [2001] for an exact definition of these two indices)
suffix (
str
) – Suffix to append to the tplot output variable
- Returns
- Return type
Name
ofthe tplot variable containing the model data
T01 Example
# load some spacecraft position data
import pyspedas
pyspedas.mms.mec(trange=['2015-10-16', '2015-10-17'])
# calculate the field using the T01 model
from pyspedas.geopack.tt01 import tt01
tt01('mms1_mec_r_gsm', parmod=params)
tplot('mms1_mec_r_gsm_bt01')
Tsyganenko-Sitnov 2004 (TS04)
- pyspedas.geopack.tts04.tts04(pos_var_gsm, parmod=None, suffix='')
tplot wrapper for the functional interface to Sheng Tian’s implementation of the Tsyganenko-Sitnov (2004) storm-time geomagnetic field model
https://github.com/tsssss/geopack
- pos_gsm_tvar: str
tplot variable containing the position data (km) in GSM coordinates
- Parameters
parmod (
ndarray
) –- 10-element array (vs. time):
solar wind pressure pdyn (nanopascals),
dst (nanotesla),
byimf,
(4) bzimf (nanotesla) (5-10) indices w1 - w6, calculated as time integrals from the beginning of a storm
see the reference (3) below, for a detailed definition of those variables
suffix (
str
) – Suffix to append to the tplot output variable
- Returns
- Return type
Name
ofthe tplot variable containing the model data
TS04 Example
# load some spacecraft position data
import pyspedas
pyspedas.mms.mec(trange=['2015-10-16', '2015-10-17'])
# calculate the field using the TS04 model
from pyspedas.geopack.tts04 import tts04
tts04('mms1_mec_r_gsm', parmod=params)
tplot('mms1_mec_r_gsm_bts04')
Solar Wind Parameters
To generate the “parmod” variable using Dst and solar wind data, use the get_tsy_params routine.
- pyspedas.geopack.get_tsy_params.get_tsy_params(dst_tvar, imf_tvar, Np_tvar, Vp_tvar, model, pressure_tvar=None, newname=None, speed=False, g_variables=None)
This procedure will interpolate inputs, generate Tsyganenko model parameters and store them in a tplot variable that can be passed directly to the model procedure.
- dst_tvar: str
tplot variable containing the Dst index
- imf_tvar: str
tplot variable containing the interplanetary magnetic field vector in GSM coordinates
- Np_tvar: str
tplot variable containing the solar wind ion density (cm**-3)
- Vp_tvar: str
tplot variable containing the proton velocity
- model: str
Tsyganenko model; should be: ‘T89’, T96’, ‘T01’,’TS04’
- Parameters
newname (
str
) – name of the output variable; default: t96_par, ‘t01_par’ or ‘ts04_par’, depending on the modelspeed (
bool
) – Flag to indicate Vp_tvar is speed, and not velocity (defaults to False)pressure_tvar (
str
) – Set this to specify a tplot variable containing solar wind dynamic pressure data. If not supplied, it will be calculated internally from proton density and proton speed.
- Returns
Name
ofthe tplot variable containing the parameters.
The parameters are
–solar wind pressure pdyn (nanopascals),
dst (nanotesla),
byimf,
(4) bzimf (nanotesla) (5-10) indices w1 - w6, calculated as time integrals from the beginning of a storm
see the reference (3) below, for a detailed definition of those variables
get_tsy_params Example
# load Dst and solar wind data
import pyspedas
pyspedas.kyoto.dst(trange=['2015-10-16', '2015-10-17'])
pyspedas.omni.data(trange=['2015-10-16', '2015-10-17'])
# join the components of B into a single variable
# BX isn't used
from pytplot import join_vec
join_vec(['BX_GSE', 'BY_GSM', 'BZ_GSM'])
from pyspedas.geopack.get_tsy_params import get_tsy_params
params = get_tsy_params('kyoto_dst',
'BX_GSE-BY_GSM-BZ_GSM_joined',
'proton_density',
'flow_speed',
't96', # or 't01', 'ts04'
pressure_tvar='Pressure',
speed=True)
Coordinate Systems
Transformations
- pyspedas.cotrans.cotrans.cotrans(name_in=None, name_out=None, time_in=None, data_in=None, coord_in=None, coord_out=None)
Transform data from coord_in to coord_out.
- Parameters
name_in (
str
, optional) – Pytplot name for input data.name_out (
str
, optional) – Pytplot name for output data.time_in (
list
offloat
, optional) – Time array. Ignored if name_in is provided.data_in (
list
offloat
, optional) – Data in the coord_in system. Ignored if name_in is provided.coord_in (
str
) – Name of input coordinate system.coord_out (
str
) – Name of output coordinate system.
- Returns
Fills a new pytplot variable with data in the coord_out system.
- Return type
Returns 1 for suggesful completion.
LMN Coordinates
- pyspedas.cotrans.gsm2lmn.gsm2lmn(times, Rxyz, Bxyz, swdata=None)
Transforms vector field from GSM to LMN (boundary-normal) coordinate system for the magnetopause using the Shue et al. (1998) magnetopause model
Getting/Setting the Coordinate System
- pyspedas.cotrans.cotrans_get_coord.cotrans_get_coord(name)
This function returns the coordinate system of a tplot variable
- Parameters
name – str name of the tplot variable
Notes
- The coordinate system is stored in the variable’s metadata at:
metadata[‘data_att’][‘coord_sys’]
See cotrans_set_coord to update the coordinate system
- Returns
Coordinate system of the tplot variable or None if the coordinate system isn’t set
- pyspedas.cotrans.cotrans_set_coord.cotrans_set_coord(name, coord)
This function sets the coordinate system of a tplot variable
- Parameters
name – str name of the tplot variable
Notes
- The coordinate system is stored in the variable’s metadata at:
metadata[‘data_att’][‘coord_sys’]
See cotrans_get_coord to return the coordinate system
- Returns
True/False depending on if the operation was successful
- Return type
Support Routines
- pyspedas.cotrans.cotrans_lib.get_time_parts(time_in)
Split time into year, doy, hours, minutes, seconds.fsec.
- pyspedas.cotrans.cotrans_lib.csundir_vect(time_in)
Calculate the direction of the sun.
- Parameters
- Returns
- pyspedas.cotrans.cotrans_lib.cdipdir(time_in=None, iyear=None, idoy=None)
Compute dipole direction in GEO coordinates.
Notes
Compute geodipole axis direction from International Geomagnetic Reference Field (IGRF-13) model for time interval 1970 to 2020. For time out of interval, computation is made for nearest boundary. Same as SPEDAS cdipdir.
- pyspedas.cotrans.cotrans_lib.cdipdir_vect(time_in=None, iyear=None, idoy=None)
Compute dipole direction in GEO coordinates.
Similar to cdipdir but for arrays.
- Parameters
- Returns
- Return type
Notes
Same as SPEDAS cdipdir_vec.
- pyspedas.cotrans.cotrans_lib.tgeigse_vect(time_in, data_in)
GEI to GSE transformation.
- pyspedas.cotrans.cotrans_lib.subgei2gse(time_in, data_in)
Transform data from GEI to GSE.
- pyspedas.cotrans.cotrans_lib.tgsegei_vect(time_in, data_in)
GSE to GEI transformation.
- pyspedas.cotrans.cotrans_lib.subgse2gei(time_in, data_in)
Transform data from GSE to GEI.
- pyspedas.cotrans.cotrans_lib.tgsegsm_vect(time_in, data_in)
Transform data from GSE to GSM.
- pyspedas.cotrans.cotrans_lib.subgse2gsm(time_in, data_in)
Transform data from GSE to GSM.
- pyspedas.cotrans.cotrans_lib.tgsmgse_vect(time_in, data_in)
Transform data from GSM to GSE.
- pyspedas.cotrans.cotrans_lib.subgsm2gse(time_in, data_in)
Transform data from GSM to GSE.
- pyspedas.cotrans.cotrans_lib.tgsmsm_vect(time_in, data_in)
Transform data from GSM to SM.
- pyspedas.cotrans.cotrans_lib.subgsm2sm(time_in, data_in)
Transform data from GSM to SM.
- pyspedas.cotrans.cotrans_lib.tsmgsm_vect(time_in, data_in)
Transform data from SM to GSM.
- pyspedas.cotrans.cotrans_lib.subsm2gsm(time_in, data_in)
Transform data from SM to GSM.
- pyspedas.cotrans.cotrans_lib.subgei2geo(time_in, data_in)
Transform data from GEI to GEO.
- pyspedas.cotrans.cotrans_lib.subgeo2gei(time_in, data_in)
Transform data from GEO to GEI.
- pyspedas.cotrans.cotrans_lib.subgeo2mag(time_in, data_in)
Transform data from GEO to MAG.
- Parameters
- Returns
Coordinates in MAG.
- Return type
Array
offloat
Notes
Adapted from spedas IDL file geo2mag.pro.
- pyspedas.cotrans.cotrans_lib.submag2geo(time_in, data_in)
Transform data from MAG to GEO.
- Parameters
- Returns
Coordinates in GEO.
- Return type
Array
offloat
Notes
Adapted from spedas IDL file mag2geo.pro.
- pyspedas.cotrans.cotrans_lib.ctv_mm_mult(m1, m2)
Vectorized multiplication of two lists of 3x3 matrices.
- Parameters
- Returns
Array (3, 3, n). List of n 3x3 matrices.
- Return type
Array
offloat
Notes
Adapted from spedas IDL file matrix_array_lib.pro.
- pyspedas.cotrans.cotrans_lib.j2000_matrix_vec(time_in)
Get the conversion matrix for J2000 coordinates.
Gives a matrix that transforms from mean earth equator and equinox of J2000 into the true earth equator and equinox for the dates and times.
- Parameters
- Returns
Transformation matrix.
- Return type
Matrix
offloat
Notes
Adapted from spedas IDL file spd_make_j2000_matrix_vec.pro.
- pyspedas.cotrans.cotrans_lib.ctv_mx_vec_rot(m, v)
Vectorized multiplication of n matrices by n vectors.
- Parameters
- Returns
Array (n, k). List of n vectors.
- Return type
Array
offloat
Notes
Adapted from spedas IDL file matrix_array_lib.pro.
- pyspedas.cotrans.cotrans_lib.subgei2j2000(time_in, data_in)
Transform data from GEI to J2000.
- pyspedas.cotrans.cotrans_lib.subj20002gei(time_in, data_in)
Transform data from J2000 to GEI.
- pyspedas.cotrans.cotrans_lib.subcotrans(time_in, data_in, coord_in, coord_out)
Transform data from coord_in to coord_out.
Calls the other sub functions in this file.
Utilities
Time Conversions
Convert from unix time to a string
- pyspedas.time_string(float_time=None, fmt=None)
Transform a list of float daytime values to a list of strings.
Example
from pyspedas import time_string
time_string(1444953600.0)
'2015-10-16 00:00:00.000000'
Convert from a string to unix time
- pyspedas.time_double(str_time=None)
Transform a list of datetimes from string to decimal.
Same as time_float.
Example
from pyspedas import time_double
time_double('2015-10-16/14:00')
1445004000.0
Convert from a string or unix time to a datetime object
- pyspedas.time_datetime(time=None, tz=None)
Find python datetime.
- Transform a list of float daytime values to a list of pythonic
‘datetime.datetime’ values.
- Parameters
time (
float/list
offloats
orstr/list
ofstr
, optional) – Input time. The default is None, which returns the time now.- Returns
Datetimes as datetime.datetime.
- Return type
Example
from pyspedas import time_datetime
time_datetime('2015-10-16/14:00')
datetime.datetime(2015, 10, 16, 14, 0, tzinfo=datetime.timezone.utc)