pySPEDAS Documentation
pySPEDAS is an implementation of the Space Physics Environment Data Analysis Software (SPEDAS) framework in Python.
The SPEDAS framework is written in IDL and contains data loading, data analysis and data plotting tools for various scientific missions (NASA, NOAA, etc.) and ground magnetometers.
pySPEDAS and pyTplot make creating multi-mission, multi-instrument figures simple, e.g., to create a figure showing magnetometer data from Solar Orbiter, Parker Solar Probe, MMS, and THEMIS,
import pyspedas
from pytplot import tplot
time_range = ['2020-04-20/06:00', '2020-04-20/08:00']
pyspedas.solo.mag(trange=time_range, time_clip=True)
pyspedas.psp.fields(trange=time_range, time_clip=True)
pyspedas.mms.fgm(trange=time_range, time_clip=True, probe=2)
pyspedas.themis.fgm(trange=time_range, time_clip=True, probe='d')
tplot(['B_RTN', 'psp_fld_l2_mag_RTN', 'mms2_fgm_b_gsm_srvy_l2_bvec', 'thd_fgs_gsm'])

Getting Started
pySPEDAS supports Windows, macOS and Linux.
Requirements
Python 3.7 or later is required.
We recommend Anaconda, which comes with a suite of packages useful for scientific data analysis. Step-by-step instructions for installing Anaconda can be found at: Windows, macOS, Linux
Installation
To get started, install the pyspedas package using PyPI:
pip install pyspedas
To upgrade to the latest version of pySPEDAS, include the ‘–upgrade’ option when calling pip, e.g.,
pip install pyspedas --upgrade
Local Data Directories
By default, the data are stored in your pyspedas directory in a folder named ‘pydata’. The recommended way of setting your local data directory is to set the SPEDAS_DATA_DIR environment variable. SPEDAS_DATA_DIR acts as a root data directory for all missions, and will also be used by IDL (if you’re running a recent copy of the bleeding edge).
Mission specific data directories (e.g., MMS_DATA_DIR for MMS, THM_DATA_DIR for THEMIS) can also be set, and these will override SPEDAS_DATA_DIR.
Loading and Plotting Data
You can load data into tplot variables by calling pyspedas.mission.instrument(), e.g.,
import pyspedas
pyspedas.mms.fgm()
The load routines support several keywords to control which data products are loaded (datatype, level, etc).
To plot the tplot variables that were loaded, use tplot from pytplot, e.g.,
from pytplot import tplot
tplot(['mms1_fgm_b_gse_srvy_l2_btot', 'mms1_fgm_b_gse_srvy_l2_bvec'])
Accessing the Data and Timestamps
Once the data are loaded into tplot variables, you can access them using the get_data function from pytplot. e.g.,
from pytplot import get_data
mag_data = get_data('mms1_fgm_b_gse_srvy_l2_bvec')
# get_data returns a namedtuple with 'times' and 'y':
mag_data.times # the unix times, stored as a numpy array
mag_data.y # the data values
Note: some types of data (spectrograms, DFs) have higher dimensions; e.g., spectra have a ‘v’ with the y-axis values for the data stored in ‘y’, and some data can have several dimensions: ‘v1’, ‘v2’, and ‘v3’
Load Routines
Advanced Composition Explorer (ACE)
The routines in this module can be used to load data from the Advanced Composition Explorer (ACE) mission.
Magnetometer (MFI)
- pyspedas.ace.mfi(trange=['2018-11-5', '2018-11-6'], datatype='h3', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Fluxgate Magnetometer
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) –- Data type; Valid options:
h0: 16-Second Level 2 Data h1: 4-Minute Level 2 Data h2: 1-Hour Level 2 Data h3: (default) 1-Second Level 2 Data k0: 5-Minute Key Parameters [PRELIM] k1: 16-Second Key Parameters [PRELIM] k2: 1-Hour Key Parameters [PRELIM]
suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
mfi_vars = pyspedas.ace.mfi(trange=['2018-11-5', '2018-11-6'])
tplot(['BGSEc', 'Magnitude'])

Solar Wind Electron, Proton and Alpha Monitor (SWEPAM)
- pyspedas.ace.swe(trange=['2018-11-5', '2018-11-6'], datatype='h0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Solar Wind Electron, Proton and Alpha Monitor (SWEPAM)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) –- Data type; Valid options:
h0: (default) 64-Second Level 2 Data h2: 1-Hour Level 2 Data k0: 5-Minute Key Parameters [PRELIM] k1: 1-Hour Key Parameters [PRELIM]
suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
swe_vars = pyspedas.ace.swe(trange=['2018-11-5', '2018-11-6'])
tplot(['Vp', 'Tpr'])

Electron, Proton, and Alpha-particle Monitor (EPAM)
- pyspedas.ace.epam(trange=['2018-11-5', '2018-11-6'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Electron Proton Alpha Monitor (EPAM)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) –- Data type; Valid options:
h1: 5-Minute Level 2 Data h2: 1-Hour Level 2 Data h3: 12-second Level 2 Data k0: (default) 5-Minute Key Parameters k1: 1-Hour Key Parameters
suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
epam_vars = pyspedas.ace.epam(trange=['2018-11-5', '2018-11-6'])
tplot(['H_lo', 'Ion_very_lo', 'Ion_lo', 'Ion_mid', 'Ion_hi', 'Electron_lo', 'Electron_hi'])

Cosmic Ray Isotope Spectrometer (CRIS)
- pyspedas.ace.cris(trange=['2018-11-5', '2018-11-6'], datatype='h2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Cosmic Ray Isotope Spectrometer (CRIS)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) –- Data type; Valid options:
h2: (default) 1-Hour Level 2 Data h3: Daily-averaged Level 2 Data
suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
cris_vars = pyspedas.ace.cris(trange=['2018-11-5', '2018-11-6'])
tplot(['flux_B', 'flux_C', 'flux_N', 'flux_O', 'flux_F', 'flux_Ne'])

Solar Isotope Spectrometer (SIS)
- pyspedas.ace.sis(trange=['2018-11-5', '2018-11-6'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Solar Isotope Spectrometer (SIS)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) –- Data type; Valid options:
h1: (default) 256-sec Level 2 Data h2: 1-Hour Level 2 Data k0: 1-Hour Key Parameters
suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
sis_vars = pyspedas.ace.sis(trange=['2018-11-5', '2018-11-6'])
tplot(['H_lo', 'H_hi', 'CNO_lo', 'CNO_hi', 'Z_ge_10'])

Ultra Low Energy Isotope Spectrometer (ULEIS)
- pyspedas.ace.uleis(trange=['2018-11-5', '2018-11-6'], datatype='h2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Ultra Low Energy Isotope Spectrometer (ULEIS)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) –- Data type; Valid options:
h2: 1-Hour Level 2 Data
suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
uleis_vars = pyspedas.ace.uleis(trange=['2018-11-5', '2018-11-6'])
tplot(['H_S1', 'H_S2', 'H_S3', 'H_S4', 'H_S5'])

Solar Energetic Particle Ionic Charge Analyzer (SEPICA)
- pyspedas.ace.sepica(trange=['2004-11-5', '2004-11-6'], datatype='h2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Solar Energetic Particle Ionic Charge Analyzer (SEPICA)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) –- Data type; Valid options:
h2: 1-Hour Level 2 Data
suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
sepica_vars = pyspedas.ace.sepica(trange=['2004-11-5', '2004-11-6'])
tplot(['H1', 'H2', 'H3'])

Solar Wind Ion Composition Spectrometer (SWICS)
- pyspedas.ace.swics(trange=['2018-11-5', '2018-11-6'], datatype='sw2_h3', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Solar Wind Ion Composition Spectrometer (SWICS)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) –- Data type; Valid options:
sw2_h3: (default) SWICS 2.0 Solar Wind 2-Hour Level 2 Data swi_h2: SWICS 1.1 Solar Wind 1-Hour Level 2 Data swi_h3: SWICS 1.1 Solar Wind 2-Hour Level 2 Data swi_h4: SWICS 1.1 Solar Wind 1-Day Level 2 Data swi_h5: SWICS 1.1 Solar Wind 2-Hour Level 2 Q-state distributions swi_h6: Solar Wind Protons 12-min Level 2 Data
suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
swi_vars = pyspedas.ace.swics(trange=['2018-11-5', '2018-11-6'])
tplot(['vHe2', 'vthHe2'])

Arase (ERG)
The routines in this module can be used to load data from the Arase mission.
Magnetic Field Experiment (MGF)
- pyspedas.erg.mgf(trange=['2017-03-27', '2017-03-28'], datatype='8sec', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, uname=None, passwd=None, time_clip=False, ror=True, coord='dsi', version=None)
This function loads data from the MGF experiment from the Arase mission
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
level – str Data level; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
ror – bool If set, print PI info and rules of the road
coord – str “sm”, “dsi”, “gse”, “gsm”, “sgi”
version – str Set this value to specify the version of cdf files (such as “v03.03”, “v03.04”, …)
- Returns
List of tplot variables created.
Example
import pyspedas
from pytplot import tplot
pyspedas.erg.mgf(trange=['2017-03-27', '2017-03-28'])
tplot('erg_mgf_l2_mag_8sec_sm')

Extremely High-energy electrons (XEP-e)
- pyspedas.erg.xep(trange=['2017-06-01', '2017-06-02'], datatype='omniflux', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, uname=None, passwd=None, time_clip=False, ror=True)
This function loads data from the XEP-e experiment from the Arase mission
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
level – str Data level; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
ror – bool If set, print PI info and rules of the road
- Returns
List of tplot variables created.
import pyspedas
from pytplot import tplot
pyspedas.erg.xep(trange=['2017-03-27', '2017-03-28'])
tplot('erg_xep_l2_FEDO_SSD')

High-energy Particles – electrons (HEP-e)
- pyspedas.erg.hep(trange=['2017-03-27', '2017-03-28'], datatype='omniflux', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, uname=None, passwd=None, time_clip=False, ror=True, version=None)
This function loads data from the HEP experiment from the Arase mission
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
level – str Data level; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
ror – bool If set, print PI info and rules of the road
version – str Set this value to specify the version of cdf files (such as “v01_02”, “v01_03”, …)
- Returns
List of tplot variables created.
import pyspedas
from pytplot import tplot
pyspedas.erg.hep(trange=['2017-03-27', '2017-03-28'])
tplot(['erg_hep_l2_FEDO_L', 'erg_hep_l2_FEDO_H'])

Medium-energy Particles - electrons (MEP-e)
- pyspedas.erg.mepe(trange=['2017-03-27', '2017-03-28'], datatype='omniflux', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, uname=None, passwd=None, time_clip=False, ror=True)
This function loads data from the MEP-e experiment from the Arase mission
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
level – str Data level; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
ror – bool If set, print PI info and rules of the road
- Returns
List of tplot variables created.
import pyspedas
from pytplot import tplot
pyspedas.erg.mepe(trange=['2017-03-27', '2017-03-28'])
tplot('erg_mepe_l2_omniflux_FEDO')

Low-energy Particles – electrons (LEP-e)
- pyspedas.erg.lepe(trange=['2017-04-04', '2017-04-05'], datatype='omniflux', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, uname=None, passwd=None, time_clip=False, ror=True, version=None, only_fedu=False, et_diagram=False)
This function loads data from the LEP-e experiment from the Arase mission
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
level – str Data level; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
ror – bool If set, print PI info and rules of the road
version – str Set this value to specify the version of cdf files (such as “v02_02”)
only_fedu – bool If set, not make erg_lepe_l3_pa_enech_??(??:01,01,..32)_FEDU Tplot Variables
et_diagram – bool If set, make erg_lepe_l3_pa_pabin_??(??:01,01,..16)_FEDU Tplot Variables
- Returns
List of tplot variables created.
import pyspedas
from pytplot import tplot
pyspedas.erg.lepe(trange=['2017-03-27', '2017-03-28'])
tplot('erg_lepe_l2_omniflux_FEDO')

Medium-energy Particles – ion (MEP-i)
- pyspedas.erg.mepi_nml(trange=['2017-03-27', '2017-03-28'], datatype='omniflux', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, uname=None, passwd=None, time_clip=False, ror=True)
This function loads data from the MEP-i experiment from the Arase mission
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
level – str Data level; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
ror – bool If set, print PI info and rules of the road
- Returns
List of tplot variables created.
import pyspedas
from pytplot import tplot
pyspedas.erg.mepi_nml(trange=['2017-03-27', '2017-03-28'])
tplot('erg_mepi_l2_omniflux_FODO')

- pyspedas.erg.mepi_tof(trange=['2017-03-27', '2017-03-28'], datatype='flux', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, uname=None, passwd=None, time_clip=False, ror=True)
This function loads data from the MEP-i experiment from the Arase mission
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
level – str Data level; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
ror – bool If set, print PI info and rules of the road
- Returns
List of tplot variables created.
Low-energy Particles – ion (LEP-i)
- pyspedas.erg.lepi(trange=['2017-07-01', '2017-07-02'], datatype='omniflux', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, uname=None, passwd=None, time_clip=False, ror=True, version=None)
This function loads data from the LEP-i experiment from the Arase mission
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
level – str Data level; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
ror – bool If set, print PI info and rules of the road
version – str Set this value to specify the version of cdf files (such as “v03_00”)
- Returns
List of tplot variables created.
Plasma Wave Experiment (PWE)
- pyspedas.erg.pwe_ofa(trange=['2017-04-01', '2017-04-02'], datatype='spec', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, uname=None, passwd=None, time_clip=False, ror=True)
This function loads data from the PWE experiment from the Arase mission
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
level – str Data level; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
ror – bool If set, print PI info and rules of the road
- Returns
List of tplot variables created.
import pyspedas
from pytplot import tplot
pyspedas.erg.pwe_ofa(trange=['2017-03-27', '2017-03-28'])
tplot('erg_pwe_ofa_l2_spec_E_spectra_132')

- pyspedas.erg.pwe_hfa(trange=['2017-04-01', '2017-04-02'], datatype='spec', mode='low', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, uname=None, passwd=None, time_clip=False, ror=True)
This function loads data from the PWE experiment from the Arase mission
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
level – str Data level; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
ror – bool If set, print PI info and rules of the road
- Returns
List of tplot variables created.
import pyspedas
from pytplot import tplot
pyspedas.erg.pwe_hfa(trange=['2017-03-27', '2017-03-28'])
tplot('erg_pwe_hfa_l2_low_spectra_esum')

- pyspedas.erg.pwe_efd(trange=['2017-04-01', '2017-04-02'], datatype='E_spin', level='l2', suffix='', coord='dsi', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, uname=None, passwd=None, time_clip=False, ror=True)
This function loads data from the PWE experiment from the Arase mission
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
level – str Data level; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
ror – bool If set, print PI info and rules of the road
- Returns
List of tplot variables created.
Orbit data
- pyspedas.erg.orb(trange=['2017-03-27', '2017-03-28'], datatype='def', level='l2', model='op', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, uname=None, passwd=None, time_clip=False, version=None, ror=True)
This function loads orbit data from the Arase mission
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
level – str Data level; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
version – str Set this value to specify the version of cdf files (such as “v03”)
- Returns
List of tplot variables created.
import pyspedas
from pytplot import tplot
pyspedas.erg.orb(trange=['2017-03-27', '2017-03-28'])
tplot(['erg_orb_l2_pos_gsm', 'erg_orb_l2_vel_gsm'])

Cluster
The routines in this module can be used to load data from the Cluster mission.
Fluxgate Magnetometer (FGM)
- pyspedas.cluster.fgm(trange=['2018-11-5', '2018-11-6'], probe='1', datatype='up', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Fluxgate Magnetometer
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Example
import pyspedas
from pytplot import tplot
fgm_vars = pyspedas.cluster.fgm(trange=['2018-11-5', '2018-11-6'])
tplot('B_xyz_gse__C1_UP_FGM')

Active Spacecraft Potential Control experiment (ASPOC)
- pyspedas.cluster.aspoc(trange=['2018-11-5', '2018-11-6'], probe='1', datatype='pp', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Active Spacecraft Potential Control experiment
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Example
import pyspedas
from pytplot import tplot
asp_vars = pyspedas.cluster.aspoc(trange=['2004-10-01', '2004-10-2'])
tplot('I_ion__C1_PP_ASP')

Cluster Ion Spectroscopy experiment (CIS)
- pyspedas.cluster.cis(trange=['2018-11-5', '2018-11-6'], probe='1', datatype='pp', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Cluster Ion Spectroscopy experiment
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Example
import pyspedas
from pytplot import tplot
cis_vars = pyspedas.cluster.cis(trange=['2004-10-01', '2004-10-2'])
tplot(['N_p__C1_PP_CIS', 'V_p_xyz_gse__C1_PP_CIS', 'T_p_par__C1_PP_CIS', 'T_p_perp__C1_PP_CIS'])

Digital Wave Processing instrument (DWP)
- pyspedas.cluster.dwp(trange=['2018-11-5', '2018-11-6'], probe='1', datatype='pp', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Digital Wave Processing instrument
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Example
import pyspedas
from pytplot import tplot
dwp_vars = pyspedas.cluster.dwp(trange=['2004-10-01', '2004-10-2'])
tplot('Correl_Ivar__C1_PP_DWP')

Electron Drift Instrument (EDI)
- pyspedas.cluster.edi(trange=['2018-11-5', '2018-11-6'], probe='1', datatype='pp', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Electron Drift Instrument
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Example
import pyspedas
from pytplot import tplot
edi_vars = pyspedas.cluster.edi(trange=['2004-10-01', '2004-10-2'])
tplot(['V_ed_xyz_gse__C1_PP_EDI', 'E_xyz_gse__C1_PP_EDI'])

Electric Field and Wave experiment (EFW)
- pyspedas.cluster.efw(trange=['2018-11-5', '2018-11-6'], probe='1', datatype='pp', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Electric Field and Wave experiment
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Example
import pyspedas
from pytplot import tplot
efw_vars = pyspedas.cluster.efw(trange=['2004-10-01', '2004-10-2'])
tplot('E_dusk__C1_PP_EFW')

Plasma Electron and Current Experiment (PEACE)
- pyspedas.cluster.peace(trange=['2016-11-5', '2016-11-6'], probe='1', datatype='pp', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Plasma Electron and Current Experiment
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Example
import pyspedas
from pytplot import tplot
peace_vars = pyspedas.cluster.peace(trange=['2004-10-01', '2004-10-2'])
tplot(['N_e_den__C1_PP_PEA', 'V_e_xyz_gse__C1_PP_PEA', 'T_e_par__C1_PP_PEA', 'T_e_perp__C1_PP_PEA'])

Research with Adaptive Particle Imaging Detectors (RAPID)
- pyspedas.cluster.rapid(trange=['2016-11-5', '2016-11-6'], probe='1', datatype='pp', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Research with Adaptive Particle Imaging Detectors
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Example
import pyspedas
from pytplot import tplot
rap_vars = pyspedas.cluster.rapid(trange=['2004-10-01', '2004-10-2'])
tplot(['J_e_lo__C1_PP_RAP', 'J_e_hi__C1_PP_RAP', 'J_p_lo__C1_PP_RAP', 'J_p_hi__C1_PP_RAP'])

Spatio-Temporal Analysis of Field Fluctuation experiment (STAFF)
- pyspedas.cluster.staff(trange=['2012-11-5', '2012-11-6'], probe='1', datatype='pp', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Spatio-Temporal Analysis of Field Fluctuation experiment
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Example
import pyspedas
from pytplot import tplot
sta_vars = pyspedas.cluster.staff(trange=['2004-10-01', '2004-10-02'])
tplot('B_par_f1__C1_PP_STA')

Wide Band Data receiver (WBD)
- pyspedas.cluster.wbd(trange=['2012-11-6', '2012-11-7'], probe='1', datatype='waveform', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Wide Band Data receiver
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Example
import pyspedas
from pytplot import tplot
wbd_vars = pyspedas.cluster.wbd(trange=['2012-11-06/02:10', '2012-11-06/02:20'])
tplot('WBD_Elec')

Waves of High Frequency and Sounder for Probing of Density by Relaxation (WHISPER)
- pyspedas.cluster.whi(trange=['2012-11-5', '2012-11-6'], probe='1', datatype='pp', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Waves of High Frequency and Sounder for Probing of Density by Relaxation instrument
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
datatype – str Data type; Valid options:
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Example
import pyspedas
from pytplot import tplot
whi_vars = pyspedas.cluster.whi()
tplot('N_e_res__C1_PP_WHI')

Colorado Student Space Weather Experiment (CSSWE)
The routines in this module can be used to load data from the Colorado Student Space Weather Experiment (CSSWE) mission.
Relativistic Electron and Proton Telescope integrated little experiment (REPTile)
- pyspedas.csswe.reptile(trange=['2013-11-5', '2013-11-6'], datatype='flux', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) –- Data type; Valid options:
‘counts’ for L1 data ‘flux’ for L2 data
level (
str
) – Data level; options: ‘l1’, ‘l2’ (default: l2)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
reptile_vars = pyspedas.csswe.reptile(trange=['2013-11-5', '2013-11-6'])
tplot(['E1flux', 'E2flux', 'E3flux', 'P1flux', 'P2flux', 'P3flux'])

Deep Space Climate Observatory (DSCOVR)
The routines in this module can be used to load data from the Deep Space Climate Observatory (DSCOVR) mission.
Magnetometer (MAG)
- pyspedas.dscovr.mag(trange=['2018-10-16', '2018-10-17'], datatype='h0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads DSCOVR Fluxgate Magnetometer data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) –- Data type; Valid options:
‘h0’: 1-sec Definitive Data (default)
suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
mag_vars = pyspedas.dscovr.mag(trange=['2018-11-5', '2018-11-6'])
tplot('dsc_h0_mag_B1GSE')

Faraday cup (FC)
- pyspedas.dscovr.fc(trange=['2018-10-16', '2018-10-17'], datatype='h1', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads DSCOVR Faraday Cup data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) –- Data type; Valid options:
‘h1’: 1-minute Isotropic Maxwellian parameters for solar wind protons (default)
suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
fc_vars = pyspedas.dscovr.fc(trange=['2018-11-5', '2018-11-6'])
tplot(['dsc_h1_fc_V_GSE', 'dsc_h1_fc_THERMAL_SPD', 'dsc_h1_fc_Np', 'dsc_h1_fc_THERMAL_TEMP'])

Orbit data
- pyspedas.dscovr.orb(trange=['2018-10-16', '2018-10-17'], datatype='orbit', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads DSCOVR Ephemeris data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
orb_vars = pyspedas.dscovr.orb(trange=['2018-11-5', '2018-11-6'])
tplot(['dsc_orbit_SUN_R', 'dsc_orbit_GCI_POS', 'dsc_orbit_GCI_VEL', 'dsc_orbit_GSE_POS', 'dsc_orbit_MOON_GSE_POS'])

Attitude data
- pyspedas.dscovr.att(trange=['2018-10-16', '2018-10-17'], datatype='orbit', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads DSCOVR Attitude data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
att_vars = pyspedas.dscovr.att(trange=['2018-11-5', '2018-11-6'])
tplot(['dsc_att_GSE_Yaw', 'dsc_att_GSE_Pitch', 'dsc_att_GSE_Roll'])

Load all data at once
- pyspedas.dscovr.all(trange=['2018-10-16', '2018-10-17'], downloadonly=False, suffix='', no_update=False, time_clip=False)
This function loads all DSCOVR data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
all_vars = pyspedas.dscovr.all(trange=['2018-11-5', '2018-11-6'])
tplot(['dsc_h0_mag_B1GSE', 'dsc_h1_fc_V_GSE', 'dsc_h1_fc_THERMAL_SPD', 'dsc_h1_fc_Np', 'dsc_orbit_GSE_POS'])

Equator-S
The routines in this module can be used to load data from the Equator-S mission.
Fluxgate magnetometer (MAM)
- pyspedas.equator_s.mam(trange=['1998-04-06', '1998-04-07'], datatype='pp', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Fluxgate magnetometer
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
mam_vars = pyspedas.equator_s.mam(trange=['1998-04-06', '1998-04-07'])
tplot('B_xyz_gse%eq_pp_mam')

Electron beam sensing instrument (EDI)
- pyspedas.equator_s.edi(trange=['1998-04-06', '1998-04-07'], datatype='pp', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Electron beam sensing instrument
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
edi_vars = pyspedas.equator_s.edi(trange=['1998-04-06', '1998-04-07'])
tplot('E_xyz_gse%eq_pp_edi')

Solid state detector (EPI)
- pyspedas.equator_s.epi(trange=['1998-04-06', '1998-04-07'], datatype='pp', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Solid state detector
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
epi_vars = pyspedas.equator_s.epi(trange=['1998-04-06', '1998-04-30'])
tplot(['J_e_1%eq_pp_epi', 'J_e_2%eq_pp_epi', 'J_e_3%eq_pp_epi'])

Time-of-fight spectrometer (ICI)
- pyspedas.equator_s.ici(trange=['1998-04-06', '1998-04-07'], datatype='pp', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Time-of-fight spectrometer
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
ici_vars = pyspedas.equator_s.ici(trange=['1998-04-06', '1998-04-07'])
tplot('V_p_xyz_gse%eq_pp_ici')

Ion emitter (PCD)
- pyspedas.equator_s.pcd(trange=['1998-04-06', '1998-04-07'], datatype='pp', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Ion emitter
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
pcd_vars = pyspedas.equator_s.pcd(trange=['1998-04-06', '1998-04-07'])
tplot('I_ion%eq_pp_pcd')

Scintillating fiber detector (SFD)
- pyspedas.equator_s.sfd(trange=['1998-01-26', '1998-01-27'], datatype='sp', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Scintillating fiber detector
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
sfd_vars = pyspedas.equator_s.sfd()
tplot('F_e>0.26%eq_sp_sfd')

Fast Auroral Snapshot Explorer (FAST)
The routines in this module can be used to load data from the Fast Auroral Snapshot Explorer (FAST) mission.
Fluxgate Magnetometer (DCB)
- pyspedas.fast.dcb(trange=['2001-09-05', '2001-09-06'], datatype='', level='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Fluxgate Magnetometer
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
dcb_vars = pyspedas.fast.dcb(trange=['1998-09-05', '1998-09-06'])
tplot('')

Search-coil Magnetometer (ACB)
- pyspedas.fast.acb(trange=['1998-01-05', '1998-01-06'], datatype='', level='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Search-coil Magnetometer
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
acb_vars = pyspedas.fast.acb()
tplot('HF_E_SPEC')

Time-of-flight Energy Angle Mass Spectrograph (TEAMS)
- pyspedas.fast.teams(trange=['1998-09-05', '1998-09-06'], datatype='', level='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Time-of-flight Energy Angle Mass Spectrograph (TEAMS)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
teams_vars = pyspedas.fast.teams(trange=['1998-09-05', '1998-09-06'])
tplot(['H+', 'H+_low', 'H+_high'])

Geotail
The routines in this module can be used to load data from the Geotail mission.
Magnetic Field Experiment (MGF)
- pyspedas.geotail.mgf(trange=['2018-11-5', '2018-11-6'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the MGF instrument
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
mgf_vars = pyspedas.geotail.mgf(trange=['2018-11-5', '2018-11-6'])
tplot(['IB', 'IB_vector'])

Electric Field Detector (EFD)
- pyspedas.geotail.efd(trange=['2018-11-5', '2018-11-6'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the EFD instrument
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
efd_vars = pyspedas.geotail.efd(trange=['2018-11-5', '2018-11-6'])
tplot(['Es', 'Ss', 'Bs', 'Vs', 'Ew', 'Sw', 'Bw', 'Vw'])

Low Energy Particle experiment (LEP)
- pyspedas.geotail.lep(trange=['2018-11-5', '2018-11-6'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the LEP instrument
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
lep_vars = pyspedas.geotail.lep(trange=['2018-11-5/05:00', '2018-11-5/06:00'], time_clip=True)
tplot(['N0', 'V0'])

Comprehensive Plasma Instrumentation (CPI)
- pyspedas.geotail.cpi(trange=['2018-11-5', '2018-11-6'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the CPI instrument
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
cpi_vars = pyspedas.geotail.cpi(trange=['2018-11-5/15:00', '2018-11-5/18:00'], time_clip=True)
tplot(['SW_P_Den', 'SW_P_AVGE', 'SW_V', 'HP_P_Den'])

Energetic Particles and Ion Composition Instrument (EPIC)
- pyspedas.geotail.epic(trange=['2018-11-5', '2018-11-6'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the EPIC instrument
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
epic_vars = pyspedas.geotail.epic(trange=['2018-11-5', '2018-11-6'])
tplot('IDiffI_I')

Plasma Wave Instrument (PWI)
- pyspedas.geotail.pwi(trange=['2018-11-5', '2018-11-6'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the PWI instrument
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
pwi_vars = pyspedas.geotail.pwi(trange=['2018-11-5/06:00', '2018-11-5/07:00'], time_clip=True)
tplot(['MCAE_AVE', 'MCAB_AVE'])

Geostationary Operational Environmental Satellite (GOES)
The routines in this module can be used to load data from the Geostationary Operational Environmental Satellite (GOES) mission.
Magnetometer (FGM)
- pyspedas.goes.fgm(trange=['2013-11-5', '2013-11-6'], probe='15', datatype='1min', suffix='', downloadonly=False, no_update=False, time_clip=False)
This function loads data from the GOES Magnetometer
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str/int
orlist
ofstrs/ints
) – GOES spacecraft #, e.g., probe=15datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
mag_vars = pyspedas.goes.fgm(trange=['2013-11-5', '2013-11-6'], datatype='512ms')
tplot(['BX_1', 'BY_1', 'BZ_1'])

Imager for Magnetopause-to-Aurora Global Exploration (IMAGE)
The routines in this module can be used to load data from the IMAGE ission.
Low-Energy Neutral Atom (LENA) imager
- pyspedas.image.lena(trange=['2004-11-5', '2004-11-6'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads IMAGE LENA data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Medium-Energy Neutral Atom (MENA) imager
- pyspedas.image.mena(trange=['2004-11-5', '2004-11-6'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads IMAGE MENA data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
High-Energy Neutral Atom (HENA) imager
- pyspedas.image.hena(trange=['2004-11-5', '2004-11-6'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads IMAGE HENA data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Radio Plasma Imaging (RPI)
- pyspedas.image.rpi(trange=['2004-11-5', '2004-11-6'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads IMAGE RPI data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Extreme Ultraviolet Imager (EUV)
- pyspedas.image.euv(trange=['2004-11-5', '2004-11-6'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads IMAGE EUV data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Far Ultraviolet Imager (FUV)
- pyspedas.image.fuv(trange=['2004-11-5', '2004-11-6'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads IMAGE FUV data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Orbit data
- pyspedas.image.orbit(trange=['2004-11-5', '2004-11-6'], datatype='def_or', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads IMAGE orbit data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Kyoto Dst
The routines in this module can be used to load Kyoto Dst data from the World Data Center for Geomagnetism, Kyoto.
Load the data
- pyspedas.kyoto.dst(trange=None, time_clip=True, remote_data_dir='http://wdc.kugi.kyoto-u.ac.jp/', suffix='')
Loads Dst data from the Kyoto servers.
- Parameters
The DST data are provided by the World Data Center for Geomagnetism, Kyoto, and are not for redistribution (http://wdc.kugi.kyoto-u.ac.jp/). Furthermore, we thank the geomagnetic observatories (Kakioka [JMA], Honolulu and San Juan [USGS], Hermanus [RSA], Alibag [IIG]), NiCT, INTERMAGNET, and many others for their cooperation to make the Dst index available.
- Return type
Name
ofthe tplot variable created.
Example
import pyspedas
from pytplot import tplot
dst_vars = pyspedas.kyoto.dst(trange=['2018-11-5', '2018-11-6'])
tplot('kyoto_dst')

Mars Atmosphere and Volatile Evolution (MAVEN)
The routines in this module can be used to load data from the Mars Atmosphere and Volatile Evolution (MAVEN) mission.
Magnetometer (MAG)
- pyspedas.maven.mag(trange=['2016-01-01', '2016-01-02'], level='l2', datatype='ss', varformat=None, get_support_data=False, auto_yes=True, downloadonly=False, varnames=[])
Example
import pyspedas
from pytplot import tplot
mag_vars = pyspedas.maven.mag(trange=['2014-10-18', '2014-10-19'])
tplot('OB_B')

Solar Wind Electron Analyzer (SWEA)
- pyspedas.maven.swea(trange=['2016-01-01', '2016-01-02'], level='l2', datatype='svyspec', varformat=None, get_support_data=False, auto_yes=True, downloadonly=False, varnames=[])
Example
import pyspedas
from pytplot import tplot
swe_vars = pyspedas.maven.swea(trange=['2014-10-18', '2014-10-19'])
tplot('diff_en_fluxes_svyspec')

Solar Wind Ion Analyzer (SWIA)
- pyspedas.maven.swia(trange=['2016-01-01', '2016-01-02'], level='l2', datatype='onboardsvyspec', varformat=None, get_support_data=False, auto_yes=True, downloadonly=False, varnames=[])
Example
import pyspedas
from pytplot import tplot
swi_vars = pyspedas.maven.swia(trange=['2014-10-18', '2014-10-19'])
tplot('spectra_diff_en_fluxes_onboardsvyspec')

SupraThermal And Thermal Ion Composition (STATIC)
- pyspedas.maven.sta(trange=['2016-01-01', '2016-01-02'], level='l2', datatype='2a', varformat=None, get_support_data=False, auto_yes=True, downloadonly=False, varnames=[])
Example
import pyspedas
from pytplot import tplot
sta_vars = pyspedas.maven.sta(trange=['2014-10-18', '2014-10-19'])
tplot('hkp_2a-hkp')

Solar Energetic Particle (SEP)
- pyspedas.maven.sep(trange=['2016-01-01', '2016-01-02'], level='l2', datatype='s2-cal-svy-full', varformat=None, get_support_data=False, auto_yes=True, downloadonly=False, varnames=[])
Example
import pyspedas
from pytplot import tplot
sep_vars = pyspedas.maven.sep(trange=['2014-10-18', '2014-10-19'])
tplot('f_ion_flux_tot_s2-cal-svy-full')

Langmuir Probe and Waves (LPW)
- pyspedas.maven.lpw(trange=['2016-01-01', '2016-01-02'], level='l2', datatype='lpiv', varformat=None, get_support_data=False, auto_yes=True, downloadonly=False, varnames=[])
Example
import pyspedas
from pytplot import tplot
lpw_vars = pyspedas.maven.lpw(trange=['2014-10-18', '2014-10-19'])
tplot('mvn_lpw_lp_iv_l2_lpiv')

Extreme Ultraviolet Monitor (EUV)
- pyspedas.maven.euv(trange=['2016-01-01', '2016-01-02'], level='l2', datatype='bands', varformat=None, get_support_data=False, auto_yes=True, downloadonly=False, varnames=[])
Example
import pyspedas
from pytplot import tplot
euv_vars = pyspedas.maven.euv(trange=['2014-10-18', '2014-10-19'])
tplot('mvn_euv_calib_bands_bands')

Magnetic Induction Coil Array (MICA)
The routines in this module can be used to load data from the Magnetic Induction Coil Array (MICA) mission.
Induction data
- pyspedas.mica.induction(site=None, trange=['2019-02-01', '2019-02-02'], suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Magnetic Induction Coil Array (MICA)
- Parameters
site (
str
) – abbreviated name of station. sites include: NAL, LYR, LOR, ISR, SDY, IQA, SNK, MCM, SPA, JBS, NEV, HAL, PG2[3,4,5]trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
nal_vars = pyspedas.mica.induction(site='NAL', trange=['2019-02-01','2019-02-02'])
tplot('spectra_x_1Hz_NAL')

Magnetospheric Multiscale (MMS)
The routines in this module can be used to load data from the Magnetospheric Multiscale (MMS) mission.
Fluxgate Magnetometer (FGM)
- pyspedas.mms.fgm(*args, **kwargs)
This function loads FGM data into tplot variables
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – list of probes, valid values for MMS probes are [‘1’,’2’,’3’,’4’].data_rate (
str
orlist
ofstr
) – instrument data rates for FGM include ‘brst’ ‘fast’ ‘slow’ ‘srvy’. The default is ‘srvy’.level (
str
) – indicates level of data processing. the default if no level is specified is ‘l2’datatype (
str
orlist
ofstr
) – no datatype for FGM instrument (all science data are loaded)get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.time_clip (
bool
) – Data will be clipped to the exact trange specified by the trange keyword.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.notplot (
bool
) – If True, then data are returned in a hash table instead of being stored in tplot variables (useful for debugging, and access to multi-dimensional data products)available (
bool
) – If True, simply return the available data files (without downloading) for the requested paramtersno_update (
bool
) – Set this flag to preserve the original data. if not set and newer data is found the existing data will be overwrittencdf_version (
str
) – Specify a specific CDF version # to load (e.g., cdf_version=’4.3.0’)min_version (
str
) – Specify a minimum CDF version # to loadlatest_version (
bool
) – Only grab the latest CDF version in the requested time intervalmajor_version (
bool
) – Only open the latest major CDF version (e.g., X in vX.Y.Z) in the requested time intervalkeep_flagged (
bool
) – If True, don’t remove flagged data (flagged data are set to NaNs by default, this keyword turns this off)always_prompt (
bool
) – Set this keyword to always prompt for the user’s username and password; useful if you accidently save an incorrect password, or if your SDC password has changedspdf (
bool
) – If True, download the data from the SPDF instead of the SDCget_fgm_ephemeris (
bool
) – Keep the ephemeris variables in the FGM files
- Returns
List of tplot variables created.
FGM Example
import pyspedas
from pytplot import tplot
pyspedas.mms.fgm(trange=['2015-10-16/12:45', '2015-10-16/13:00'], time_clip=True)
tplot(['mms1_fgm_b_gsm_srvy_l2_btot', 'mms1_fgm_b_gsm_srvy_l2_bvec'])

Search-coil Magnetometer (SCM)
- pyspedas.mms.scm(*args, **kwargs)
This function loads SCM data into tplot variables
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – list of probes, valid values for MMS probes are [‘1’,’2’,’3’,’4’].data_rate (
str
orlist
ofstr
) – instrument data rates for SCM include [‘brst’ ‘fast’ ‘slow’ ‘srvy’]. The default is ‘srvy’.level (
str
) – indicates level of data processing. the default if no level is specified is ‘l2’datatype (
str
orlist
ofstr
) – Valid datatypes for SCM are: [‘scsrvy’, ‘cal’, ‘scb’, ‘scf’, ‘schb’, ‘scm’, ‘scs’] If no value is given the default is scsrvy for srvy data, and scb for brst data.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.time_clip (
bool
) – Data will be clipped to the exact trange specified by the trange keyword.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.notplot (
bool
) – If True, then data are returned in a hash table instead of being stored in tplot variables (useful for debugging, and access to multi-dimensional data products)available (
bool
) – If True, simply return the available data files (without downloading) for the requested paramtersno_update (
bool
) – Set this flag to preserve the original data. if not set and newer data is found the existing data will be overwrittencdf_version (
str
) – Specify a specific CDF version # to load (e.g., cdf_version=’4.3.0’)min_version (
str
) – Specify a minimum CDF version # to loadlatest_version (
bool
) – Only grab the latest CDF version in the requested time intervalmajor_version (
bool
) – Only open the latest major CDF version (e.g., X in vX.Y.Z) in the requested time intervalalways_prompt (
bool
) – Set this keyword to always prompt for the user’s username and password; useful if you accidently save an incorrect password, or if your SDC password has changedspdf (
bool
) – If True, download the data from the SPDF instead of the SDC
- Returns
List of tplot variables created.
SCM Example
import pyspedas
from pytplot import tplot
pyspedas.mms.scm(trange=['2015-10-16/13:06', '2015-10-16/13:07'], time_clip=True)
tplot('mms1_scm_acb_gse_scsrvy_srvy_l2')

Level 3 FGM+SCM Data (FSM)
- pyspedas.mms.fsm(*args, **kwargs)
This function loads FSM data into tplot variables
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – list of probes, valid values for MMS probes are [‘1’,’2’,’3’,’4’].data_rate (
str
orlist
ofstr
) – the current instrument data rate for FSM is ‘brst’level (
str
) – indicates level of data processing. the default if no level is specified is ‘l2’datatype (
str
orlist
ofstr
) – Valid datatype for FSM is: 8khzget_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.time_clip (
bool
) – Data will be clipped to the exact trange specified by the trange keyword.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.notplot (
bool
) – If True, then data are returned in a hash table instead of being stored in tplot variables (useful for debugging, and access to multi-dimensional data products)available (
bool
) – If True, simply return the available data files (without downloading) for the requested paramtersno_update (
bool
) – Set this flag to preserve the original data. if not set and newer data is found the existing data will be overwrittencdf_version (
str
) – Specify a specific CDF version # to load (e.g., cdf_version=’4.3.0’)min_version (
str
) – Specify a minimum CDF version # to loadlatest_version (
bool
) – Only grab the latest CDF version in the requested time intervalmajor_version (
bool
) – Only open the latest major CDF version (e.g., X in vX.Y.Z) in the requested time intervalalways_prompt (
bool
) – Set this keyword to always prompt for the user’s username and password; useful if you accidently save an incorrect password, or if your SDC password has changedspdf (
bool
) – If True, download the data from the SPDF instead of the SDC
- Returns
List of tplot variables created.
FSM Example
import pyspedas
from pytplot import tplot
pyspedas.mms.fsm(trange=['2015-10-16/13:06', '2015-10-16/13:07'], time_clip=True)
tplot(['mms1_fsm_b_mag_brst_l3', 'mms1_fsm_b_gse_brst_l3'])

Electric field Double Probe (EDP)
- pyspedas.mms.edp(*args, **kwargs)
This function loads EDP data into tplot variables
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – list of probes, valid values for MMS probes are [‘1’,’2’,’3’,’4’].data_rate (
str
orlist
ofstr
) – instrument data rates for EDP include [‘brst’, ‘fast’, ‘slow’, ‘srvy’]. The default is ‘fast’.level (
str
) – indicates level of data processing. the default if no level is specified is ‘l2’datatype (
str
orlist
ofstr
) – Valid datatypes for EDP are: [‘dce’, ‘dcv’, ‘ace’, ‘hmfe’]; default is ‘dce’get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.time_clip (
bool
) – Data will be clipped to the exact trange specified by the trange keyword.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.notplot (
bool
) – If True, then data are returned in a hash table instead of being stored in tplot variables (useful for debugging, and access to multi-dimensional data products)available (
bool
) – If True, simply return the available data files (without downloading) for the requested paramtersno_update (
bool
) – Set this flag to preserve the original data. if not set and newer data is found the existing data will be overwrittencdf_version (
str
) – Specify a specific CDF version # to load (e.g., cdf_version=’4.3.0’)min_version (
str
) – Specify a minimum CDF version # to loadlatest_version (
bool
) – Only grab the latest CDF version in the requested time intervalmajor_version (
bool
) – Only open the latest major CDF version (e.g., X in vX.Y.Z) in the requested time intervalalways_prompt (
bool
) – Set this keyword to always prompt for the user’s username and password; useful if you accidently save an incorrect password, or if your SDC password has changedspdf (
bool
) – If True, download the data from the SPDF instead of the SDC
- Returns
List of tplot variables created.
EDP Example
import pyspedas
from pytplot import tplot
pyspedas.mms.edp(trange=['2015-10-16/13:06', '2015-10-16/13:07'], time_clip=True)
tplot('mms1_edp_dce_gse_fast_l2')

Electron Drift Instrument (EDI)
- pyspedas.mms.edi(*args, **kwargs)
This function loads EDI data into tplot variables
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – list of probes, valid values for MMS probes are [‘1’,’2’,’3’,’4’].data_rate (
str
orlist
ofstr
) – instrument data rates for EDI include [‘brst’, ‘fast’, ‘slow’, ‘srvy’]. The default is ‘srvy’.level (
str
) – indicates level of data processing. the default if no level is specified is ‘l2’datatype (
str
orlist
ofstr
) – Valid datatypes for EDI are: [‘efield’, ‘amb’]; default is ‘efield’get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.time_clip (
bool
) – Data will be clipped to the exact trange specified by the trange keyword.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.notplot (
bool
) – If True, then data are returned in a hash table instead of being stored in tplot variables (useful for debugging, and access to multi-dimensional data products)available (
bool
) – If True, simply return the available data files (without downloading) for the requested paramtersno_update (
bool
) – Set this flag to preserve the original data. if not set and newer data is found the existing data will be overwrittencdf_version (
str
) – Specify a specific CDF version # to load (e.g., cdf_version=’4.3.0’)min_version (
str
) – Specify a minimum CDF version # to loadlatest_version (
bool
) – Only grab the latest CDF version in the requested time intervalmajor_version (
bool
) – Only open the latest major CDF version (e.g., X in vX.Y.Z) in the requested time intervalalways_prompt (
bool
) – Set this keyword to always prompt for the user’s username and password; useful if you accidently save an incorrect password, or if your SDC password has changedspdf (
bool
) – If True, download the data from the SPDF instead of the SDC
- Returns
List of tplot variables created.
EDI Example
import pyspedas
from pytplot import tplot
pyspedas.mms.edi(trange=['2016-10-16/21:00', '2016-10-16/22:00'], time_clip=True)
tplot(['mms1_edi_vdrift_gse_srvy_l2', 'mms1_edi_e_gse_srvy_l2'])

Fly’s Eye Energetic Particle Sensor (FEEPS)
- pyspedas.mms.feeps(*args, **kwargs)
This function loads FEEPS data into tplot variables
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – list of probes, valid values for MMS probes are [‘1’,’2’,’3’,’4’].data_rate (
str
orlist
ofstr
) – instrument data rates for FEEPS include [‘brst’, ‘srvy’]. The default is ‘srvy’.level (
str
) – indicates level of data processing. the default if no level is specified is ‘l2’datatype (
str
orlist
ofstr
) –- Valid datatypes for FEEPS are:
L2, L1b: [‘electron’, ‘ion’] L1a: [‘electron-bottom’, ‘electron-top’, ‘ion-bottom’, ‘ion-top’]
get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.time_clip (
bool
) – Data will be clipped to the exact trange specified by the trange keyword.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.notplot (
bool
) – If True, then data are returned in a hash table instead of being stored in tplot variables (useful for debugging, and access to multi-dimensional data products)available (
bool
) – If True, simply return the available data files (without downloading) for the requested paramtersno_update (
bool
) – Set this flag to preserve the original data. if not set and newer data is found the existing data will be overwrittencdf_version (
str
) – Specify a specific CDF version # to load (e.g., cdf_version=’4.3.0’)min_version (
str
) – Specify a minimum CDF version # to loadlatest_version (
bool
) – Only grab the latest CDF version in the requested time intervalmajor_version (
bool
) – Only open the latest major CDF version (e.g., X in vX.Y.Z) in the requested time intervalalways_prompt (
bool
) – Set this keyword to always prompt for the user’s username and password; useful if you accidently save an incorrect password, or if your SDC password has changedspdf (
bool
) – If True, download the data from the SPDF instead of the SDC
- Returns
List of tplot variables created.
FEEPS Example
import pyspedas
from pytplot import tplot
pyspedas.mms.feeps(trange=['2015-10-16', '2015-10-17'])
tplot('mms1_epd_feeps_srvy_l2_electron_intensity_omni_spin')

Energetic Ion Spectrometer (EIS)
- pyspedas.mms.eis(*args, **kwargs)
This function loads EIS data into tplot variables
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – list of probes, valid values for MMS probes are [‘1’,’2’,’3’,’4’].data_rate (
str
orlist
ofstr
) – instrument data rates for EIS include [‘brst’, ‘srvy’]. The default is ‘srvy’.level (
str
) – indicates level of data processing. the default if no level is specified is ‘l2’datatype (
str
orlist
ofstr
) – Valid datatypes for EIS are: [‘extof’, ‘phxtof’, and ‘electronenergy’]; default is ‘extof’get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.time_clip (
bool
) – Data will be clipped to the exact trange specified by the trange keyword.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.notplot (
bool
) – If True, then data are returned in a hash table instead of being stored in tplot variables (useful for debugging, and access to multi-dimensional data products)available (
bool
) – If True, simply return the available data files (without downloading) for the requested paramtersno_update (
bool
) – Set this flag to preserve the original data. if not set and newer data is found the existing data will be overwrittencdf_version (
str
) – Specify a specific CDF version # to load (e.g., cdf_version=’4.3.0’)min_version (
str
) – Specify a minimum CDF version # to loadlatest_version (
bool
) – Only grab the latest CDF version in the requested time intervalmajor_version (
bool
) – Only open the latest major CDF version (e.g., X in vX.Y.Z) in the requested time intervalalways_prompt (
bool
) – Set this keyword to always prompt for the user’s username and password; useful if you accidently save an incorrect password, or if your SDC password has changedspdf (
bool
) – If True, download the data from the SPDF instead of the SDC
- Returns
List of tplot variables created.
EIS Example
import pyspedas
from pytplot import tplot
pyspedas.mms.eis(trange=['2015-10-16', '2015-10-17'])
tplot(['mms1_epd_eis_srvy_l2_extof_proton_flux_omni', 'mms1_epd_eis_srvy_l2_extof_proton_flux_omni_spin'])

Active Spacecraft Potential Control (ASPOC)
- pyspedas.mms.aspoc(*args, **kwargs)
This function loads ASPOC data into tplot variables
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – list of probes, valid values for MMS probes are [‘1’,’2’,’3’,’4’].data_rate (
str
orlist
ofstr
) – instrument data rates for ASPOC include ‘srvy’, ‘sitl’. The default is ‘srvy’.level (
str
) – indicates level of data processing. the default if no level is specified is ‘l2’datatype (
str
orlist
ofstr
) – Valid datatypes for ASPOC are: [‘asp1’, ‘asp2’, ‘aspoc’]; default is ‘aspoc’get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.time_clip (
bool
) – Data will be clipped to the exact trange specified by the trange keyword.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.notplot (
bool
) – If True, then data are returned in a hash table instead of being stored in tplot variables (useful for debugging, and access to multi-dimensional data products)available (
bool
) – If True, simply return the available data files (without downloading) for the requested paramtersno_update (
bool
) – Set this flag to preserve the original data. if not set and newer data is found the existing data will be overwrittencdf_version (
str
) – Specify a specific CDF version # to load (e.g., cdf_version=’4.3.0’)min_version (
str
) – Specify a minimum CDF version # to loadlatest_version (
bool
) – Only grab the latest CDF version in the requested time intervalmajor_version (
bool
) – Only open the latest major CDF version (e.g., X in vX.Y.Z) in the requested time intervalalways_prompt (
bool
) – Set this keyword to always prompt for the user’s username and password; useful if you accidently save an incorrect password, or if your SDC password has changedspdf (
bool
) – If True, download the data from the SPDF instead of the SDC
- Returns
List of tplot variables created.
ASPOC Example
import pyspedas
from pytplot import tplot
pyspedas.mms.aspoc(trange=['2015-10-16', '2015-10-17'])
tplot(['mms1_aspoc_ionc_l2', 'mms1_asp1_ionc_l2', 'mms1_asp2_ionc_l2'])

Fast Plasma Investigation (FPI)
- pyspedas.mms.fpi(*args, **kwargs)
This function loads FPI data into tplot variables
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – list of probes, valid values for MMS probes are [‘1’,’2’,’3’,’4’].data_rate (
str
orlist
ofstr
) – instrument data rates for FPI include ‘brst’, ‘fast’. The default is ‘srvy’.level (
str
) – indicates level of data processing. the default if no level is specified is ‘l2’datatype (
str
orlist
ofstr
) –- Valid datatypes for FPI are:
‘des-moms’, ‘dis-moms’ (default) ‘des-dist’, ‘dis-dist’
get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.time_clip (
bool
) – Data will be clipped to the exact trange specified by the trange keyword.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.center_measurement (
bool
) – If True, the CDF epoch variables are time-shifted to the middle of the accumulation interval by their DELTA_PLUS_VAR and DELTA_MINUS_VAR variable attributesnotplot (
bool
) – If True, then data are returned in a hash table instead of being stored in tplot variables (useful for debugging, and access to multi-dimensional data products)available (
bool
) – If True, simply return the available data files (without downloading) for the requested paramtersno_update (
bool
) – Set this flag to preserve the original data. if not set and newer data is found the existing data will be overwrittencdf_version (
str
) – Specify a specific CDF version # to load (e.g., cdf_version=’4.3.0’)min_version (
str
) – Specify a minimum CDF version # to loadlatest_version (
bool
) – Only grab the latest CDF version in the requested time intervalmajor_version (
bool
) – Only open the latest major CDF version (e.g., X in vX.Y.Z) in the requested time intervalalways_prompt (
bool
) – Set this keyword to always prompt for the user’s username and password; useful if you accidently save an incorrect password, or if your SDC password has changedspdf (
bool
) – If True, download the data from the SPDF instead of the SDC
- Returns
List of tplot variables created.
FPI Example
import pyspedas
from pytplot import tplot
pyspedas.mms.fpi(trange=['2015-10-16', '2015-10-17'], datatype='des-moms')
tplot(['mms1_des_energyspectr_omni_fast', 'mms1_des_bulkv_gse_fast', 'mms1_des_numberdensity_fast'])

Hot Plasma Composition Analyzer (HPCA)
- pyspedas.mms.hpca(*args, **kwargs)
This function loads HPCA data into tplot variables
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – list of probes, valid values for MMS probes are [‘1’,’2’,’3’,’4’].data_rate (
str
orlist
ofstr
) – instrument data rates for HPCA include ‘brst’, ‘srvy’. The default is ‘srvy’.level (
str
) – indicates level of data processing. the default if no level is specified is ‘l2’datatype (
str
orlist
ofstr
) – Valid datatypes for HPCA are ‘moments’ and ‘ion’; the default is ‘moments’get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)time_clip (
bool
) – Data will be clipped to the exact trange specified by the trange keyword.suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.center_measurement (
bool
) – If True, the CDF epoch variables are time-shifted to the middle of the accumulation interval by their DELTA_PLUS_VAR and DELTA_MINUS_VAR variable attributesnotplot (
bool
) – If True, then data are returned in a hash table instead of being stored in tplot variables (useful for debugging, and access to multi-dimensional data products)available (
bool
) – If True, simply return the available data files (without downloading) for the requested paramtersno_update (
bool
) – Set this flag to preserve the original data. if not set and newer data is found the existing data will be overwrittencdf_version (
str
) – Specify a specific CDF version # to load (e.g., cdf_version=’4.3.0’)min_version (
str
) – Specify a minimum CDF version # to loadlatest_version (
bool
) – Only grab the latest CDF version in the requested time intervalmajor_version (
bool
) – Only open the latest major CDF version (e.g., X in vX.Y.Z) in the requested time intervalalways_prompt (
bool
) – Set this keyword to always prompt for the user’s username and password; useful if you accidently save an incorrect password, or if your SDC password has changedspdf (
bool
) – If True, download the data from the SPDF instead of the SDC
- Returns
List of tplot variables created.
HPCA Example
import pyspedas
from pytplot import tplot
pyspedas.mms.hpca(trange=['2015-10-16', '2015-10-17'], datatype='moments')
tplot(['mms1_hpca_hplus_number_density', 'mms1_hpca_hplus_ion_bulk_velocity', 'mms1_hpca_hplus_scalar_temperature'])

Magnetic Ephemeris Coordinates (MEC)
- pyspedas.mms.mec(*args, **kwargs)
This function loads MEC data into tplot variables
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – list of probes, valid values for MMS probes are [‘1’,’2’,’3’,’4’].data_rate (
str
orlist
ofstr
) – instrument data rates for MEC include [‘brst’, ‘srvy’]. The default is ‘srvy’.level (
str
) – indicates level of data processing. the default if no level is specified is ‘l2’datatype (
str
orlist
ofstr
) – Valid datatypes for MEC are: [‘ephts04d’, ‘epht89q’, ‘epht89d’]; default is ‘epht89q’get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.time_clip (
bool
) – Data will be clipped to the exact trange specified by the trange keyword.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.notplot (
bool
) – If True, then data are returned in a hash table instead of being stored in tplot variables (useful for debugging, and access to multi-dimensional data products)available (
bool
) – If True, simply return the available data files (without downloading) for the requested paramtersno_update (
bool
) – Set this flag to preserve the original data. if not set and newer data is found the existing data will be overwrittencdf_version (
str
) – Specify a specific CDF version # to load (e.g., cdf_version=’4.3.0’)min_version (
str
) – Specify a minimum CDF version # to loadlatest_version (
bool
) – Only grab the latest CDF version in the requested time intervalmajor_version (
bool
) – Only open the latest major CDF version (e.g., X in vX.Y.Z) in the requested time intervalalways_prompt (
bool
) – Set this keyword to always prompt for the user’s username and password; useful if you accidently save an incorrect password, or if your SDC password has changedspdf (
bool
) – If True, download the data from the SPDF instead of the SDC
Notes
The default datatype was changed to ‘epht89q’ on 15Nov2021. There are sometimes issues with creating the Tsyganenko 04 data products, which leads to the ‘epht04d’ files not being available. The ‘epht89d’ files contain the same ephemeris data - the only difference are the data products that rely on the field model.
- Returns
List of tplot variables created.
MEC Example
import pyspedas
from pytplot import tplot
pyspedas.mms.mec(trange=['2015-10-16', '2015-10-17'])
tplot(['mms1_mec_r_gsm', 'mms1_mec_v_gsm'])

- pyspedas.mms.state(*args, **kwargs)
This function loads the state (ephemeris and attitude) data from the ASCII files into tplot variables
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – list of probes, valid values for MMS probes are [‘1’,’2’,’3’,’4’].level (
str
) – indicates level of data (options: ‘def’ (definitive), ‘pred’ (predicted); default: def)datatypes (
str
orlist
ofstr
) – no datatype for state data (options: ‘pos’, ‘vel’, ‘spinras’, ‘spindec’)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.no_update (
bool
) – Set this flag to preserve the original data. if not set and newer data is found the existing data will be overwritten
- Returns
List of tplot variables created.
State Example
import pyspedas
from pytplot import tplot
pyspedas.mms.state(trange=['2020-12-16', '2020-12-17'])
tplot(['mms1_defeph_pos', 'mms1_defeph_vel'])

OMNI data
The routines in this module can be used to load data from the OMNI data mission.
- pyspedas.omni.data(trange=['2013-11-5', '2013-11-6'], datatype='1min', level='hro2', suffix='', get_support_data=False, get_ignore_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=True)
This function loads OMNI (Combined 1AU IP Data; Magnetic and Solar Indices) data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]level (
str
) – Data level; valid options: hro, hro2datatype (
str
) – Data type; valid options: 1min, 5min, hourly (1 hour)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
omni_vars = pyspedas.omni.data(trange=['2013-11-5', '2013-11-6'])
tplot(['BX_GSE', 'BY_GSE', 'BZ_GSE', 'flow_speed', 'Vx', 'Vy', 'Vz', 'SYM_H'])

Polar Orbiting Environmental Satellites (POES) Mission
The routines in this module can be used to load data from the Polar Orbiting Environmental Satellites (POES) Mission mission.
Space Environment Monitor (SEM)
- pyspedas.poes.sem(trange=['2018-11-5', '2018-11-6'], probe=['noaa19'], datatype='*', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads POES Space Environment Monitor (SEM) data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
sem_vars = pyspedas.poes.sem(trange=['2013-11-5', '2013-11-6'])
tplot('ted_ele_tel30_low_eflux')

Polar
The routines in this module can be used to load data from the Polar mission.
Magnetic Field Experiment (MFE)
- pyspedas.polar.mfe(trange=['2003-10-28', '2003-10-29'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Magnetic Field Experiment
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
mfe_vars = pyspedas.polar.mfe(trange=['2003-10-28', '2003-10-29'])
tplot(['B_GSE', 'B_GSM'])

Electric Fields Instrument (EFI)
- pyspedas.polar.efi(trange=['2003-10-28', '2003-10-29'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Electric Fields Instrument
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
efi_vars = pyspedas.polar.efi(trange=['2003-10-28', '2003-10-29'])
tplot(['ESPIN', 'EXY12G', 'EZ12G'])

Plasma Wave Instrument (PWI)
- pyspedas.polar.pwi(trange=['1997-01-03', '1997-01-04'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Plasma Wave Instrument
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
pwi_vars = pyspedas.polar.pwi()
tplot(['Fce', 'Fcp', 'FcO'])

Hot Plasma Analyzer Experiment (HYDRA)
- pyspedas.polar.hydra(trange=['2003-10-28', '2003-10-29'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Hot Plasma Analyzer Experiment
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
hydra_vars = pyspedas.polar.hydra(trange=['2003-10-28', '2003-10-29'])
tplot('ELE_DENSITY')

Thermal Ion Dynamics Experiment (TIDE)
- pyspedas.polar.tide(trange=['1997-01-03', '1997-01-04'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Thermal Ion Dynamics Experiment / Plasma Source Investigation
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
tide_vars = pyspedas.polar.tide()
tplot(['total_den', 'total_v', 'total_t'])

Toroidal Imaging Mass Angle Spectrograph (TIMAS)
- pyspedas.polar.timas(trange=['1997-01-03', '1997-01-04'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Toroidal Imaging Mass Angle Spectrograph
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
timas_vars = pyspedas.polar.timas(trange=['1997-01-03/6:00', '1997-01-03/7:00'], time_clip=True)
tplot(['Density_H', 'Density_O'])

Charge and Mass Magnetospheric Ion Composition Experiment (CAMMICE)
- pyspedas.polar.cammice(trange=['2003-10-28', '2003-10-29'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Charge and Mass Magnetospheric Ion Composition Experiment
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
cammice_vars = pyspedas.polar.cammice(trange=['2003-10-28', '2003-10-29'])
tplot('Protons')

Comprehensive Energetic Particle-Pitch Angle Distribution (CEPPAD)
- pyspedas.polar.ceppad(trange=['2003-10-28', '2003-10-29'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Comprehensive Energetic Particle-Pitch Angle Distribution
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
cep_vars = pyspedas.polar.ceppad(trange=['2003-10-28', '2003-10-29'])
tplot(['IPS_10_ERR', 'IPS_30_ERR', 'IPS_50_ERR'])

Orbit data
- pyspedas.polar.orbit(trange=['2003-10-28', '2003-10-29'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads Polar orbit data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
orb_vars = pyspedas.polar.orbit(trange=['2003-10-28', '2003-10-29'])
tplot(['SPIN_PHASE', 'AVG_SPIN_RATE'])

Parker Solar Probe (PSP)
The routines in this module can be used to load data from the Parker Solar Probe (PSP) mission.
Electromagnetic Fields Investigation (FIELDS)
- pyspedas.psp.fields(trange=['2018-11-5', '2018-11-6'], datatype='mag_rtn', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads Parker Solar Probe FIELDS data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
fields_vars = pyspedas.psp.fields(trange=['2018-11-5', '2018-11-5/06:00'], datatype='mag_rtn', level='l2', time_clip=True)
tplot('psp_fld_l2_mag_RTN')

Solar Probe Cup
- pyspedas.psp.spc(trange=['2018-11-5', '2018-11-6'], datatype='l3i', level='l3', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads Parker Solar Probe Solar Probe Cup data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
spc_vars = pyspedas.psp.spc(trange=['2018-11-5', '2018-11-6'], datatype='l3i', level='l3')
tplot(['np_fit', 'vp_fit_RTN'])

SWEAP/SPAN-e
- pyspedas.psp.spe(trange=['2018-11-5', '2018-11-6'], datatype='spa_sf1_32e', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads Parker Solar Probe SWEAP/SPAN-e data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
spe_vars = pyspedas.psp.spe(trange=['2018-11-5', '2018-11-5/06:00'], datatype='spa_sf1_32e', level='l2', time_clip=True)
tplot('EFLUX')

SWEAP/SPAN-i
- pyspedas.psp.spi(trange=['2018-11-5', '2018-11-6'], datatype='spi_sf0a_mom_inst', level='l3', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads Parker Solar Probe SWEAP/SPAN-i data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
spi_vars = pyspedas.psp.spi(trange=['2018-11-5', '2018-11-5/06:00'], datatype='spi_sf0a_mom_inst', level='l3', time_clip=True)
tplot(['DENS', 'VEL', 'T_TENSOR', 'TEMP', 'EFLUX_VS_ENERGY', 'EFLUX_VS_THETA', 'EFLUX_VS_PHI'])

IS☉IS/EPI-Hi
- pyspedas.psp.epihi(trange=['2018-11-5', '2018-11-6'], datatype='let1_rates1h', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads Parker Solar Probe ISoIS/EPI-Hi data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
epihi_vars = pyspedas.psp.epihi(trange=['2018-11-5', '2018-11-5/06:00'], datatype='let1_rates1h', level='l2', time_clip=True)
tplot(['B_He_Rate', 'A_He_Flux', 'A_S_Rate'])

IS☉IS/EPI (merged summary data)
- pyspedas.psp.epi(trange=['2018-11-5', '2018-11-6'], datatype='summary', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads Parker Solar Probe ISoIS/EPI (merged summary) data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
epi_vars = pyspedas.psp.epi(trange=['2018-11-5', '2018-11-5/06:00'], datatype='summary', level='l2', time_clip=True)
tplot(['A_H_Rate_TS', 'H_CountRate_ChanT_SP', 'Electron_CountRate_ChanE', 'HET_A_H_Rate_TS', 'HET_A_Electrons_Rate_TS'])

Solar Orbiter (SOLO)
The routines in this module can be used to load data from the Solar Orbiter (SOLO) mission.
Magnetometer (MAG)
- pyspedas.solo.mag(trange=['2020-06-01', '2020-06-02'], datatype='rtn-normal', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Magnetometer (MAG)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) –- Data type; Valid options:
‘rtn-normal’: RTN Coordinates in Normal Mode ‘rtn-normal-1-minute’: Same as above, but at 1-min resolution ‘rtn-burst’: RTN Coordinates in Burst Mode ‘srf-normal’: Spacecraft Reference Frame in Normal Mode ‘srf-burst’: Spacecraft Reference Frame in Burst Mode
level (
str
) – Data level (default: l2)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
mag_vars = pyspedas.solo.mag(trange=['2020-06-01', '2020-06-02'], datatype='rtn-normal')
tplot('B_RTN')

Solar Wind Plasma Analyser (SWA)
- pyspedas.solo.swa(trange=['2020-07-22', '2020-07-23'], datatype='pas-eflux', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Solar Wind Plasma Analyser (SWA)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:level (
str
) – Data level (default: l2)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
swa_vars = pyspedas.solo.swa(trange=['2020-07-22', '2020-07-23'], datatype='pas-eflux')
tplot('eflux')

Energetic Particle Detector (EPD)
- pyspedas.solo.epd(trange=['2020-06-14', '2020-06-15'], datatype='step', mode='hcad', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Energetic Particle Detector (EPD)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:mode (
str
) – EPD mode; Valid options:level (
str
) – Data level (default: l2)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
epd_vars = pyspedas.solo.epd(trange=['2020-06-01', '2020-06-02'], datatype='step', mode='rates')
tplot(['Magnet_Flux', 'Integral_Flux'])

Radio and Plasma Waves (RPW)
- pyspedas.solo.rpw(trange=['2020-06-15', '2020-06-16'], datatype='hfr-surv', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Radio and Plasma Waves (RPW) instrument
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options: Level 1:‘hfr-surv’, ‘lfr-surv-asm’, ‘lfr-surv-bp1’, ‘lfr-surv-bp2’, ‘lfr-surv-cwf’, ‘lfr-surv-swf’, ‘tds-surv-hist1d’, ‘tds-surv-hist2d’, ‘tds-surv-mamp’, ‘tds-surv-rswf’, ‘tds-surv-stat’, ‘tds-surv-tswf’, ‘tnr-surv’ (see below for definitions)
- Level 2:
- High Frequency Receiver (HFR):
‘hfr-surv’: High Frequency Receiver (HFR) Data in Survey Mode
- Low Frequency Receiver (LFR):
‘lfr-surv-asm’: Averaged Spectral Matrix (ASM) Data in Survey Mode ‘lfr-surv-bp1’: Basic Parameters Set 1 (BP1) Data in Survey Mode ‘lfr-surv-bp2’: Basic Parameter Set 2 (BP2) Data in Survey Mode ‘lfr-surv-cwf-b’: Continuous Magnetic Waveform (CWF-B) in Survey Mode ‘lfr-surv-cwf-e’: Continuous Electric Waveform (CWF-E) in Survey Mode ‘lfr-surv-swf-b’: Snapshot Magnetic Waveform (SWF-B) in Survey Mode ‘lfr-surv-swf-e’: Snapshot Electric Waveform (SWF-E) in Survey Mode
- Time Domain Sampler (TDS):
‘tds-surv-hist1d’: Histogram Set 1 (HIST1D) Data in Survey Mode ‘tds-surv-hist2d’: Histogram Set 2 (HIST2D) Data in Survey Mode ‘tds-surv-mamp’: Maximum Amplitude (MAMP) Data in Survey Mode ‘tds-surv-rswf-b’: Regular Snapshot Waveform (RSWF) Magnetic Field Data in Survey Mode ‘tds-surv-rswf-e’: Regular Snapshot Waveform (RSWF) Electric Field Data in Survey Mode ‘tds-surv-stat’: Statistical (STAT) Data in Survey Mode ‘tds-surv-tswf-b’: Triggered Snapshot Magnetic Waveform (TSWF-B) in Survey Mode ‘tds-surv-tswf-e’: Triggered Snapshot Electric Waveform (TSWF-E) in Survey Mode
- Level 3:
‘bia-density’: Plasma density derived from probe-to-spacecraft potential and electron plasma frequency ‘bia-density-10-seconds’: same as above, but median value over 10 s interval ‘bia-efield-10-seconds’: Electric field vector in SRF. Median value over 10 s interval ‘bia-scpot-10-seconds’: Spacecraft potential with respect to plasma. Median value over 10 s interval ‘tnr-fp’: Plasma frequency value derived by the plasma peak tracking (Thermal Noise Receiver (TNR))
level (
str
) – Data level (default: l2)suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
rpw_vars = pyspedas.solo.rpw(trange=['2020-06-15', '2020-06-16'], datatype='hfr-surv')
tplot(['AVERAGE_NR', 'TEMPERATURE', 'FLUX_DENSITY1', 'FLUX_DENSITY2'])

Solar Terrestrial Relations Observatory (STEREO)
The routines in this module can be used to load data from the Solar Terrestrial Relations Observatory (STEREO) mission.
Magnetometer (MAG)
- pyspedas.stereo.mag(trange=['2013-11-5', '2013-11-6'], probe='a', datatype='8hz', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the magnetometer
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options: 8hz, 32hzsuffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
mag_vars = pyspedas.stereo.mag(trange=['2013-11-5', '2013-11-6'])
tplot('BFIELD')

PLAsma and SupraThermal Ion Composition (PLASTIC)
- pyspedas.stereo.plastic(trange=['2013-11-5', '2013-11-6'], probe='a', datatype='1min', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the PLASTIC instrument
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options: 1minsuffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
plastic_vars = pyspedas.stereo.plastic(trange=['2013-11-5', '2013-11-6'])
tplot(['proton_number_density', 'proton_bulk_speed', 'proton_temperature', 'proton_thermal_speed'])

Time History of Events and Macroscale Interactions during Substorms (THEMIS)
The routines in this module can be used to load data from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission.
Fluxgate magnetometer (FGM)
- pyspedas.themis.fgm(trange=['2007-03-23', '2007-03-24'], probe='c', level='l2', suffix='', get_support_data=False, varformat=None, coord=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads Fluxgate magnetometer (FGM) data
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
probe – str or list of str Spacecraft probe letter(s) (‘a’, ‘b’, ‘c’, ‘d’ and/or ‘e’)
level – str or list of str Data type; Valid options: ‘l1’, ‘l2’
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
coord – str Coordinate system
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables. If set, this function returns a list of the files downloaded.
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Example
import pyspedas
from pytplot import tplot
fgm_vars = pyspedas.themis.fgm(probe='d', trange=['2013-11-5', '2013-11-6'])
tplot(['thd_fgs_btotal', 'thd_fgs_gse'])

Search-coil magnetometer (SCM)
- pyspedas.themis.scm(trange=['2007-03-23', '2007-03-24'], probe='c', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads Search-coil magnetometer (SCM) data
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
probe – str or list of str Spacecraft probe letter(s) (‘a’, ‘b’, ‘c’, ‘d’ and/or ‘e’)
level – str Data type; Valid options: ‘l1’, ‘l2’
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Example
import pyspedas
from pytplot import tplot
scm_vars = pyspedas.themis.scm(probe='d', trange=['2013-11-5', '2013-11-6'])
tplot(['thd_scf_btotal', 'thd_scf_gse'])

Electric Field Instrument (EFI)
- pyspedas.themis.efi(trange=['2007-03-23', '2007-03-24'], probe='c', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads Electric Field Instrument (EFI) data
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
probe – str or list of str Spacecraft probe letter(s) (‘a’, ‘b’, ‘c’, ‘d’ and/or ‘e’)
level – str Data type; Valid options: ‘l1’, ‘l2’
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Example
import pyspedas
from pytplot import tplot
efi_vars = pyspedas.themis.efi(probe='d', trange=['2013-11-5', '2013-11-6'])
tplot('thd_efs_dot0_gse')

Electrostatic Analyzer (ESA)
- pyspedas.themis.esa(trange=['2007-03-23', '2007-03-24'], probe='c', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads Electrostatic Analyzer (ESA) data
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
probe – str or list of str Spacecraft probe letter(s) (‘a’, ‘b’, ‘c’, ‘d’ and/or ‘e’)
level – str Data type; Valid options: ‘l1’, ‘l2’
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Example
import pyspedas
from pytplot import tplot
esa_vars = pyspedas.themis.esa(probe='d', trange=['2013-11-5', '2013-11-6'])
tplot(['thd_peif_density', 'thd_peif_vthermal'])

Solid State Telescope (SST)
- pyspedas.themis.sst(trange=['2007-03-23', '2007-03-24'], probe='c', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads Solid State Telescope (SST) data
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
probe – str or list of str Spacecraft probe letter(s) (‘a’, ‘b’, ‘c’, ‘d’ and/or ‘e’)
level – str Data type; Valid options: ‘l1’, ‘l2’
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Example
import pyspedas
from pytplot import tplot
sst_vars = pyspedas.themis.sst(probe='d', trange=['2013-11-5', '2013-11-6'])
tplot('thd_psif_density')

Moments data
- pyspedas.themis.mom(trange=['2008-03-23', '2008-03-24'], probe='c', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads THEMIS moments data
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
probe – str or list of str Spacecraft probe letter(s) (‘a’, ‘b’, ‘c’, ‘d’ and/or ‘e’)
level – str Data type; Valid options: ‘l1’, ‘l2’
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Example
import pyspedas
from pytplot import tplot
mom_vars = pyspedas.themis.mom(probe='d', trange=['2013-11-5', '2013-11-6'])
tplot(['thd_peim_velocity_gsm', 'thd_peim_density'])

Ground computed moments data
- pyspedas.themis.gmom(trange=['2007-03-23', '2007-03-24'], probe='c', level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads THEMIS Level 2 ground calculated combined ESA+SST moments.
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
probe – str or list of str Spacecraft probe letter(s) (‘a’, ‘b’, ‘c’, ‘d’ and/or ‘e’)
level – str Data type; Valid options: ‘l2’
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Example
import pyspedas
from pytplot import tplot
gmom_vars = pyspedas.themis.gmom(probe='d', trange=['2013-11-5', '2013-11-6'])
tplot(['thd_ptiff_velocity_gse', 'thd_pteff_density', 'thd_pteff_avgtemp'])

State data
- pyspedas.themis.state(trange=['2007-03-23', '2007-03-24'], probe='c', level='l1', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads THEMIS state data
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
probe – str or list of str Spacecraft probe letter(s) (‘a’, ‘b’, ‘c’, ‘d’ and/or ‘e’)
level – str Data type; Valid options: ‘l1’
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
- Returns
List of tplot variables created.
Example
import pyspedas
from pytplot import tplot
state_vars = pyspedas.themis.state(probe='d', trange=['2013-11-5', '2013-11-6'])
tplot(['thd_pos', 'thd_vel'])

Ground magnetometer data
- pyspedas.themis.gmag(trange=['2007-03-23', '2007-03-24'], sites=None, group=None, level='l2', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads ground magnetometer data
- Parameters
trange – list of str time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]
level – str Data type; Valid options: ‘l1’, ‘l2’
suffix – str The tplot variable names will be given this suffix. By default, no suffix is added.
get_support_data – bool Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.
varformat – str The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.
varnames – list of str List of variable names to load (if not specified, all data variables are loaded)
downloadonly – bool Set this flag to download the CDF files, but not load them into tplot variables
notplot – bool Return the data in hash tables instead of creating tplot variables
no_update – bool If set, only load data from your local cache
time_clip – bool Time clip the variables to exactly the range specified in the trange keyword
sites – str/list of str GMAG station names to load (e.g. ‘bmls’).
group – str GMAG group of stations (eg. ‘epo’). If specified, stations is ignored.
- Returns
List of tplot variables created.
Example
import pyspedas
from pytplot import tplot
gmag_vars = pyspedas.themis.gmag(sites='ccnv', trange=['2013-11-5', '2013-11-6'])
tplot('thg_mag_ccnv')

Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) Mission
The routines in this module can be used to load data from the Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) Mission mission.
Energetic Neutral Atom (ENA) imager
- pyspedas.twins.imager(trange=['2018-11-5', '2018-11-6'], probe='1', datatype='', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads TWINS imager data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Lyman-alpha Detector (LAD)
- pyspedas.twins.lad(trange=['2018-11-5', '2018-11-6'], probe='1', datatype='', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the LAD instrument
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
lad_vars = pyspedas.twins.lad(trange=['2018-11-5/6:00', '2018-11-5/6:20'], time_clip=True)
tplot(['lad1_data', 'lad2_data'])

Ephemeris
- pyspedas.twins.ephemeris(trange=['2018-11-5', '2018-11-6'], probe='1', datatype='or', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads TWINS ephemeris data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
ephem_vars = pyspedas.twins.ephemeris(trange=['2018-11-5', '2018-11-6'])
tplot('FSCGSM')

Ulysses
The routines in this module can be used to load data from the Ulysses mission.
Magnetic field (VHM)
- pyspedas.ulysses.vhm(trange=['2009-01-01', '2009-01-02'], datatype='1min', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=True)
This function loads data from the VHM/FGM experiment from the Ulysses mission
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:level (
str
) – Data level; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
vhm_vars = pyspedas.ulysses.vhm()
tplot('B_MAG')

Solar wind plasma (SWOOPS)
- pyspedas.ulysses.swoops(trange=['2009-01-01', '2009-01-02'], datatype='bai_m0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the SWOOPS experiment from the Ulysses mission
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:level (
str
) – Data level; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
swoops_vars = pyspedas.ulysses.swoops()
tplot(['Density', 'Temperature', 'Velocity'])

Solar wind ion composition (SWICS)
- pyspedas.ulysses.swics(trange=['2009-01-01', '2009-01-02'], datatype='scs_m1', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the SWICS experiment from the Ulysses mission
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:level (
str
) – Data level; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
swics_vars = pyspedas.ulysses.swics()
tplot('Velocity')

Energetic particles (EPAC)
- pyspedas.ulysses.epac(trange=['1996-01-01', '1996-01-02'], datatype='epac_m1', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the EPAC experiment from the Ulysses mission
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:level (
str
) – Data level; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
epac_vars = pyspedas.ulysses.epac()
tplot('Omni_Protons')

Low-energy ions and electrons (HI-SCALE)
- pyspedas.ulysses.hiscale(trange=['2003-01-01', '2003-01-02'], datatype='lmde_m1', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the HI-SCALE experiment from the Ulysses mission
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:level (
str
) – Data level; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
hiscale_vars = pyspedas.ulysses.hiscale()
tplot('Electrons')

Solar X-rays and cosmic gamma-ray bursts (GRB)
- pyspedas.ulysses.grb(trange=['2003-01-01', '2003-01-02'], datatype='grb_m0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the GRB experiment from the Ulysses mission
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:level (
str
) – Data level; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
grb_vars = pyspedas.ulysses.grb()
tplot('Count_Rate')

Van Allen Probes (RBSP)
The routines in this module can be used to load data from the Van Allen Probes (RBSP) mission.
Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS)
- pyspedas.rbsp.emfisis(trange=['2018-11-5', '2018-11-6'], probe='a', datatype='magnetometer', level='l3', cadence='4sec', coord='sm', wavetype='waveform', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrument
- For information on the EMFISIS data products, see:
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – Spacecraft probe name (‘a’ or ‘b’); default: acadence (
str
) – Data cadence (default: 4sec); other options: ‘1sec’, ‘hires’coord (
str
) – Data coordinate system (default: sm)level (
str
) – Data level; options: ‘l1’, ‘l2’, ‘l3’, l4’datatype (
str
) – Data type; valid options: Level 1:‘magnetometer’ ‘hfr’ ‘housekeeping’ ‘sc-hk’ ‘spaceweather’ ‘wfr’ ‘wna’
- Level 2:
‘magnetometer’ ‘wfr’ ‘hfr’ ‘housekeeping’
- Level 3:
‘magnetometer’
- Level 4:
‘density’ ‘wna-survey’
wavetype (
str
) –- Type of level 2 waveform data; valid options:
For WFR data: ‘waveform’ (default) ‘waveform-continuous-burst’ ‘spectral-matrix’ ‘spectral-matrix-diagonal’ ‘spectral-matrix-diagonal-merged’
For HFR data: ‘waveform’ ‘spectra’ ‘spectra-burst’ ‘spectra-merged’
- For descriptions of these data, see:
suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
emfisis_vars = pyspedas.rbsp.emfisis(trange=['2018-11-5/10:00', '2018-11-5/15:00'], datatype='magnetometer', level='l3', time_clip=True)
tplot(['Mag', 'Magnitude'])

Electric Field and Waves Suite (EFW)
- pyspedas.rbsp.efw(trange=['2015-11-5', '2015-11-6'], probe='a', datatype='spec', level='l3', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Electric Field and Waves Suite (EFW)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – Spacecraft probe name (‘a’ or ‘b’); default: adatatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
efw_vars = pyspedas.rbsp.efw(trange=['2015-11-5', '2015-11-6'], level='l3')
tplot(['efield_in_inertial_frame_spinfit_mgse', 'spacecraft_potential'])

Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE)
- pyspedas.rbsp.rbspice(trange=['2018-11-5', '2018-11-6'], probe='a', datatype='tofxeh', level='l3', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – Spacecraft probe name (‘a’ or ‘b’); default: adatatype (
str
) – Data type (default: tofxeh); Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
rbspice_vars = pyspedas.rbsp.rbspice(trange=['2018-11-5', '2018-11-6'], datatype='tofxeh', level='l3')
tplot('Alpha')

Energetic Particle, Composition, and Thermal Plasma Suite (ECT) - MagEIS
- pyspedas.rbsp.mageis(trange=['2015-11-5', '2015-11-6'], probe='a', datatype='', level='l3', rel='rel04', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Energetic Particle, Composition, and Thermal Plasma Suite (ECT)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – Spacecraft probe name (‘a’ or ‘b’); default: adatatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
mageis_vars = pyspedas.rbsp.mageis(trange=['2018-11-5', '2018-11-6'], level='l3', rel='rel04')
tplot('I')

Energetic Particle, Composition, and Thermal Plasma Suite (ECT) - HOPE
- pyspedas.rbsp.hope(trange=['2015-11-5', '2015-11-6'], probe='a', datatype='moments', level='l3', rel='rel04', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Energetic Particle, Composition, and Thermal Plasma Suite (ECT)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – Spacecraft probe name (‘a’ or ‘b’); default: adatatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
hope_vars = pyspedas.rbsp.hope(trange=['2018-11-5', '2018-11-6'], datatype='moments', level='l3', rel='rel04')
tplot('Ion_density')

Energetic Particle, Composition, and Thermal Plasma Suite (ECT) - REPT
- pyspedas.rbsp.rept(trange=['2015-11-5', '2015-11-6'], probe='a', datatype='', level='l3', rel='rel03', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Energetic Particle, Composition, and Thermal Plasma Suite (ECT)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – Spacecraft probe name (‘a’ or ‘b’); default: adatatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
rept_vars = pyspedas.rbsp.rept(trange=['2018-11-5', '2018-11-6'], level='l3', rel='rel03')
tplot('Tperp_e_200')

Relativistic Proton Spectrometer (RPS)
- pyspedas.rbsp.rps(trange=['2015-11-5', '2015-11-6'], probe='a', datatype='rps-1min', level='l2', suffix='', get_support_data=True, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Relativistic Proton Spectrometer (RPS)
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]probe (
str
orlist
ofstr
) – Spacecraft probe name (‘a’ or ‘b’); default: adatatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
rps_vars = pyspedas.rbsp.rps(trange=['2018-11-5', '2018-11-6'], datatype='rps', level='l2')
tplot('DOSE1')

Wind
The routines in this module can be used to load data from the Wind mission.
Magnetic Field Investigation (MFI)
- pyspedas.wind.mfi(trange=['2018-11-5', '2018-11-6'], datatype='h0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Fluxgate Magnetometer
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
mfi_vars = pyspedas.wind.mfi(trange=['2013-11-5', '2013-11-6'])
tplot('BGSE')

Solar Wind Experiment (SWE)
- pyspedas.wind.swe(trange=['2018-11-5', '2018-11-6'], datatype='h5', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the SWE instrument
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
swe_vars = pyspedas.wind.swe(trange=['2013-11-5', '2013-11-6'])
tplot(['N_elec', 'T_elec'])

Radio and Plasma Waves (WAVES)
- pyspedas.wind.waves(trange=['2018-11-5', '2018-11-6'], datatype='h1', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads Radio/Plasma Wave (WAVES) data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
waves_vars = pyspedas.wind.waves(trange=['2013-11-5', '2013-11-6'])
tplot(['E_VOLTAGE_RAD2', 'E_VOLTAGE_RAD1', 'E_VOLTAGE_TNR'])

3D Plasma Analyzer (3DP)
- pyspedas.wind.threedp(trange=['1999-11-5', '1999-11-6'], datatype='3dp_emfits_e0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads 3DP data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
threedp_vars = pyspedas.wind.threedp()
tplot(['V_e_xyz_gse_wi_3dp', 'N_e_dens_wi_3dp', 'T_e_par_wi_3dp'])

Solar Wind and Suprathermal Ion Composition Experiment (SMS)
- pyspedas.wind.sms(trange=['1999-11-5', '1999-11-6'], datatype='k0', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads data from the Solar Wind and Suprathermal Ion Composition Instrument
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
sms_vars = pyspedas.wind.sms()
tplot(['C_ion_temp', 'O_ion_temp'])

Orbit data
- pyspedas.wind.orbit(trange=['1999-11-5', '1999-11-6'], datatype='pre_or', suffix='', get_support_data=False, varformat=None, varnames=[], downloadonly=False, notplot=False, no_update=False, time_clip=False)
This function loads orbit data
- Parameters
trange (
list
ofstr
) – time range of interest [starttime, endtime] with the format ‘YYYY-MM-DD’,’YYYY-MM-DD’] or to specify more or less than a day [‘YYYY-MM-DD/hh:mm:ss’,’YYYY-MM-DD/hh:mm:ss’]datatype (
str
) – Data type; Valid options:suffix (
str
) – The tplot variable names will be given this suffix. By default, no suffix is added.get_support_data (
bool
) – Data with an attribute “VAR_TYPE” with a value of “support_data” will be loaded into tplot. By default, only loads in data with a “VAR_TYPE” attribute of “data”.varformat (
str
) – The file variable formats to load into tplot. Wildcard character “*” is accepted. By default, all variables are loaded in.varnames (
list
ofstr
) – List of variable names to load (if not specified, all data variables are loaded)downloadonly (
bool
) – Set this flag to download the CDF files, but not load them into tplot variablesnotplot (
bool
) – Return the data in hash tables instead of creating tplot variablesno_update (
bool
) – If set, only load data from your local cachetime_clip (
bool
) – Time clip the variables to exactly the range specified in the trange keyword
- Return type
List
oftplot variables created.
Example
import pyspedas
from pytplot import tplot
orb_vars = pyspedas.wind.orbit(trange=['2013-11-5', '2013-11-6'])
tplot(['GSE_POS', 'GSE_VEL', 'GSM_POS', 'GSM_VEL'])

Analysis Tools
Average data
- pyspedas.avg_data(names, dt=None, width=60, noremainder=False, new_names=None, suffix=None, overwrite=None)
Get a new tplot variable with averaged data.
- Parameters
names (
str/list
ofstr
) – List of pytplot names.dt (
float
, optional) – Time window in seconds for averaging data. It can be less than 1 sec.width (
int
, optional) – Number of values for the averaging window. Default is 60 points (usually this means 60 seconds). If dt is set, then width is ignored.noremainder (
boolean
, optional) – If True, the remainter (last part of data) will not be included. If False. the remainter will be included.new_names (
str/list
ofstr
, optional) – List of new_names for pytplot variables. If not given, then a suffix is applied.suffix (
str
, optional) – A suffix to apply. Default is ‘-avg’.overwrite (
bool
, optional) – Replace the existing tplot name.
- Return type
None.
Clean spikes
- pyspedas.clean_spikes(names, nsmooth=10, thresh=0.3, sub_avg=False, new_names=None, suffix=None, overwrite=None)
Clean spikes from data.
- Parameters
names (
str/list
ofstr
) – List of pytplot names.new_names (
str/list
ofstr
, optional) – List of new_names for pytplot variables. If not given, then a suffix is applied.suffix (
str
, optional) – A suffix to apply. Default is ‘-avg’.overwrite (
bool
, optional) – Replace the existing tplot name.nsmooth (
int
, optional) – the number of data points for smoothingthresh (
float
, optional) – threshold valuesub_avg (
bool
, optional) – if set, subtract the average value of the data prior to checking for spikes
- Return type
None.
Cross products
- pyspedas.tcrossp(v1, v2, newname=None, return_data=False)
Calculates the cross product of two tplot varibles
- v1: str
First tplot variable
- v2: str
Second tplot variable
Dot products
- pyspedas.tdotp(variable1, variable2, newname=None)
Routine to calculate the dot product of two tplot variables containing arrays of vectors and storing the results in a tplot variable
- variable1: str
First tplot variable
- variable2: str
Second tplot variable
- Parameters
newname (
str
) – Name of the output variable- Return type
Name
ofthe tplot variable
Dynamic power spectra
- pyspedas.tdpwrspc(varname, newname=None, nboxpoints=256, nshiftpoints=128, binsize=3, nohanning=False, noline=False, notperhz=False, notmvariance=False)
Compute power spectra for a tplot variable.
- Parameters
varname (
str
) – Name of pytplot variable.newname (
str
, optional) – Name of new pytplot variable to save data to.nboxpoints (
int
, optional) – The number of points to use for the hanning window. The default is 256.nshiftpoints (
int
, optional) – The number of points to shift for each spectrum. The default is 128.binsize (
int
, optional) – Size for binning of the data along the frequency domain. The default is 3.nohanning (
bool
, optional) – If True, no hanning window is applied to the input. The default is False.noline (
bool
, optional) – If True, no straight line is subtracted. The default is False.notperhz (
bool
, optional) – If True, the output units are the square of the input units. The default is False.notmvariance (
bool
, optional) – If True, replace output spectrum for any windows that have variable. cadence with NaNs. The default is False.
- Returns
Name of new pytplot variable.
- Return type
- pyspedas.dpwrspc(time, quantity, nboxpoints=256, nshiftpoints=128, binsize=3, nohanning=False, noline=False, notperhz=False, notmvariance=False, tm_sensitivity=None)
Compute power spectra.
- Parameters
nboxpoints (
int
, optional) – The number of points to use for the hanning window. The default is 256.nshiftpoints (
int
, optional) – The number of points to shift for each spectrum. The default is 128.binsize (
int
, optional) – Size for binning of the data along the frequency domain. The default is 3.nohanning (
bool
, optional) – If True, no hanning window is applied to the input. The default is False.noline (
bool
, optional) – If True, no straight line is subtracted. The default is False.notperhz (
bool
, optional) – If True, the output units are the square of the input units. The default is False.notmvariance (
bool
, optional) – If True, replace output spectrum for any windows that have variable cadence with NaNs. The default is False.tm_sensitivity (
float
, optional) – If noTmVariance is set, this number controls how much of a dt anomaly is accepted. The default is None.
- Returns
Interpolation
- pyspedas.tinterpol(names, interp_to, method=None, newname=None, suffix=None)
Interpolate data to times in interp_to.
- Parameters
names (
str/list
ofstr
) – List of variables to interpolate.interp_to (
str
) –- String containing the variable
containing the time stamps to interpolate to
method (
str
, optional) – Interpolation method. Default is ‘linear’. Specifies the kind of interpolation as a string (‘linear’, ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘previous’, ‘next’) where ‘zero’, ‘slinear’, ‘quadratic’ and ‘cubic’ refer to a spline interpolation of zeroth, first, second or third order; ‘previous’ and ‘next’ simply return the previous or next value of the point) or as an integer specifying the order of the spline interpolator to use.newname (
str/list
ofstr
, optional) – List of new_names for pytplot variables. If ‘’, then pytplot variables are replaced. If not given, then a suffix is applied.suffix (
str
, optional) – A suffix to apply. Default is ‘-itrp’.
- Return type
None.
Normalize vectors
- pyspedas.tnormalize(variable, newname=None, return_data=False)
Normalize all the vectors stored in a tplot variable
- variable: str or np.ndarray
tplot variable (or numpy array) containing the vectors to be normalized
Subtract average
- pyspedas.subtract_average(names, new_names=None, suffix=None, overwrite=None, median=None)
Subtracts the average or the median from data.
- Parameters
names (
str/list
ofstr
) – List of pytplot names.new_names (
str/list
ofstr
, optional) – List of new_names for pytplot variables. If not given, then a suffix is applied.suffix (
str
, optional) – A suffix to apply. Default is ‘-d’.overwrite (
bool
, optional) – If set, then pytplot variables are replaced.median (
float
, optional) – If it is 0 or not set, then it computes the mean. Otherwise, it computes the median.
- Return type
None.
Subtract median
- pyspedas.subtract_median(names, new_names=None, suffix=None, overwrite=None)
Subtracts the median from data.
- Parameters
names (
str/list
ofstr
) – List of pytplot names.new_names (
str/list
ofstr
, optional) – List of new_names for pytplot variables. If not given, then a suffix is applied.suffix (
str
, optional) – A suffix to apply. Default is ‘-d’.overwrite (
bool
, optional) – If set, then pytplot variables are replaced.
- Return type
None.
Wave polarization
- pyspedas.twavpol(tvarname, prefix='', nopfft=- 1, steplength=- 1, bin_freq=- 1)
Apply wavpol to a pytplot variable.
Creates multiple pytplot variables: ‘_powspec’,’_degpol’, ‘_waveangle’, ‘_elliptict’, ‘_helict’, ‘_pspec3_x’, ‘_pspec3_y’, ‘_pspec3_z’
- Parameters
tvarname (
string
) – Name of pytplot variable.prefix (
string
, optional) – Prefix for pytplot variables created.nopfft (
int
, optional) – Number of points in FFT. The default is 256.steplength (
int
, optional) – The amount of overlap between successive FFT intervals. The default is -1 which means nopfft/2.bin_freq (
int
, optional) – Number of bins in frequency domain. The default is 3.
- Returns
result – Returns 1 if completed successfully. Returns 0 if it encountered problems and exited.
- Return type
- pyspedas.analysis.twavpol.wavpol(ct, bx, by, bz, nopfft=256, steplength=- 1, bin_freq=3)
Perform polarisation analysis of Bx, By, Bz time series data.
- Parameters
- Returns
result (
tuple with 9 items
)powspec (
2-dim array
offloat
) – Wave power.degpol (
2-dim array
offloat
) – Degree of Polarisation.waveangle (
2-dim array
offloat
) – Wavenormal Angle.elliptict (
2-dim array
offloat
) – Ellipticity.helict (
2-dim array
offloat
) – Helicity.pspec3 (
3-dim array
offloat
) – Power spectra.err_flag (
bool
) – Error flag. The default is 0. Returns 1 if there are large number of batches and aborts.
Magnetic Field Models
The routines in this module can be used to calculate Tsyganenko magnetic field models using Sheng Tian’s implementation of the geopack library (https://github.com/tsssss/geopack).
Tsyganenko 89 (T89)
- pyspedas.geopack.tt89(pos_var_gsm, iopt=3, suffix='', igrf_only=False)
tplot wrapper for the functional interface to Sheng Tian’s implementation of the Tsyganenko 96 and IGRF model:
https://github.com/tsssss/geopack
- pos_gsm_tvar: str
tplot variable containing the position data (km) in GSM coordinates
T89 Example
# load some spacecraft position data
import pyspedas
pyspedas.mms.mec(trange=['2015-10-16', '2015-10-17'])
# calculate the field using the T89 model
from pyspedas.geopack import tt89
tt89('mms1_mec_r_gsm')
from pytplot import tplot
tplot('mms1_mec_r_gsm_bt89')

Tsyganenko 96 (T96)
- pyspedas.geopack.tt96(pos_var_gsm, parmod=None, suffix='')
tplot wrapper for the functional interface to Sheng Tian’s implementation of the Tsyganenko 96 and IGRF model:
https://github.com/tsssss/geopack
- pos_gsm_tvar: str
tplot variable containing the position data (km) in GSM coordinates
- Parameters
parmod (
ndarray
) –- 10-element array (vs. time), but only the first 4 elements are used
solar wind pressure pdyn (nanopascals)
dst (nanotesla)
byimf (nanotesla)
bzimf (nanotesla)
suffix (
str
) – Suffix to append to the tplot output variable
- Return type
Name
ofthe tplot variable containing the model data
T96 Example
# load some spacecraft position data
import pyspedas
pyspedas.mms.mec(trange=['2015-10-16', '2015-10-17'])
# calculate the params using the solar wind data; see the "Solar Wind Parameters" section below for an example
# interpolate the MEC timestamps to the solar wind timestamps
from pyspedas import tinterpol
tinterpol('mms1_mec_r_gsm', 'proton_density')
# calculate the field using the T96 model
from pyspedas.geopack import tt96
tt96('mms1_mec_r_gsm-itrp', parmod=params)
from pytplot import tplot
tplot('mms1_mec_r_gsm-itrp_bt96')

Tsyganenko 2001 (T01)
- pyspedas.geopack.tt01(pos_var_gsm, parmod=None, suffix='')
tplot wrapper for the functional interface to Sheng Tian’s implementation of the Tsyganenko 2001 and IGRF model:
https://github.com/tsssss/geopack
- pos_gsm_tvar: str
tplot variable containing the position data (km) in GSM coordinates
- Parameters
parmod (
ndarray
) –- 10-element array (vs. time), but only the first 6 elements are used
solar wind pressure pdyn (nanopascals),
dst (nanotesla)
byimf (nanotesla)
bzimf (nanotesla)
g1-index
g2-index (see Tsyganenko [2001] for an exact definition of these two indices)
suffix (
str
) – Suffix to append to the tplot output variable
- Return type
Name
ofthe tplot variable containing the model data
T01 Example
# load some spacecraft position data
import pyspedas
pyspedas.mms.mec(trange=['2015-10-16', '2015-10-17'])
# calculate the params using the solar wind data; see the "Solar Wind Parameters" section below for an example
# interpolate the MEC timestamps to the solar wind timestamps
from pyspedas import tinterpol
tinterpol('mms1_mec_r_gsm', 'proton_density')
# calculate the field using the T01 model
from pyspedas.geopack import tt01
tt01('mms1_mec_r_gsm-itrp', parmod=params)
from pytplot import tplot
tplot('mms1_mec_r_gsm-itrp_bt01')

Tsyganenko-Sitnov 2004 (TS04)
- pyspedas.geopack.tts04(pos_var_gsm, parmod=None, suffix='')
tplot wrapper for the functional interface to Sheng Tian’s implementation of the Tsyganenko-Sitnov (2004) storm-time geomagnetic field model
https://github.com/tsssss/geopack
- pos_gsm_tvar: str
tplot variable containing the position data (km) in GSM coordinates
- Parameters
parmod (
ndarray
) –- 10-element array (vs. time):
solar wind pressure pdyn (nanopascals),
dst (nanotesla),
byimf,
(4) bzimf (nanotesla) (5-10) indices w1 - w6, calculated as time integrals from the beginning of a storm
see the reference (3) below, for a detailed definition of those variables
suffix (
str
) – Suffix to append to the tplot output variable
- Return type
Name
ofthe tplot variable containing the model data
TS04 Example
# load some spacecraft position data
import pyspedas
pyspedas.mms.mec(trange=['2015-10-16', '2015-10-17'])
# calculate the params using the solar wind data; see the "Solar Wind Parameters" section below for an example
# interpolate the MEC timestamps to the solar wind timestamps
from pyspedas import tinterpol
tinterpol('mms1_mec_r_gsm', 'proton_density')
# calculate the field using the TS04 model
from pyspedas.geopack import tts04
tts04('mms1_mec_r_gsm-itrp', parmod=params)
from pytplot import tplot
tplot('mms1_mec_r_gsm-itrp_bts04')

Solar Wind Parameters
To generate the “parmod” variable using Dst and solar wind data, use the get_tsy_params routine.
- pyspedas.geopack.get_tsy_params.get_tsy_params(dst_tvar, imf_tvar, Np_tvar, Vp_tvar, model, pressure_tvar=None, newname=None, speed=False, g_variables=None)
This procedure will interpolate inputs, generate Tsyganenko model parameters and store them in a tplot variable that can be passed directly to the model procedure.
- dst_tvar: str
tplot variable containing the Dst index
- imf_tvar: str
tplot variable containing the interplanetary magnetic field vector in GSM coordinates
- Np_tvar: str
tplot variable containing the solar wind ion density (cm**-3)
- Vp_tvar: str
tplot variable containing the proton velocity
- model: str
Tsyganenko model; should be: ‘T89’, T96’, ‘T01’,’TS04’
- Parameters
newname (
str
) – name of the output variable; default: t96_par, ‘t01_par’ or ‘ts04_par’, depending on the modelspeed (
bool
) – Flag to indicate Vp_tvar is speed, and not velocity (defaults to False)pressure_tvar (
str
) – Set this to specify a tplot variable containing solar wind dynamic pressure data. If not supplied, it will be calculated internally from proton density and proton speed.
- Returns
Name
ofthe tplot variable containing the parameters.
The parameters are
–solar wind pressure pdyn (nanopascals),
dst (nanotesla),
byimf,
(4) bzimf (nanotesla) (5-10) indices w1 - w6, calculated as time integrals from the beginning of a storm
see the reference (3) below, for a detailed definition of those variables
get_tsy_params Example
# load Dst and solar wind data
import pyspedas
pyspedas.kyoto.dst(trange=['2015-10-16', '2015-10-17'])
pyspedas.omni.data(trange=['2015-10-16', '2015-10-17'])
# join the components of B into a single variable
# BX isn't used
from pytplot import join_vec
join_vec(['BX_GSE', 'BY_GSM', 'BZ_GSM'])
from pyspedas.geopack.get_tsy_params import get_tsy_params
params = get_tsy_params('kyoto_dst',
'BX_GSE-BY_GSM-BZ_GSM_joined',
'proton_density',
'flow_speed',
't96', # or 't01', 'ts04'
pressure_tvar='Pressure',
speed=True)
Coordinate Systems
Transformations
- pyspedas.cotrans(name_in=None, name_out=None, time_in=None, data_in=None, coord_in=None, coord_out=None)
Transform data from coord_in to coord_out.
- Parameters
name_in (
str
, optional) – Pytplot name for input data.name_out (
str
, optional) – Pytplot name for output data.time_in (
list
offloat
, optional) – Time array. Ignored if name_in is provided.data_in (
list
offloat
, optional) – Data in the coord_in system. Ignored if name_in is provided.coord_in (
str
) – Name of input coordinate system.coord_out (
str
) – Name of output coordinate system.
- Returns
Fills a new pytplot variable with data in the coord_out system.
- Return type
Returns 1 for suggesful completion.
Examples
import pyspedas
pyspedas.themis.state(trange=['2015-10-16', '2015-10-17'], probe='c')
from pyspedas import cotrans
cotrans(name_in='thc_pos_gse', name_out='gsm_data', coord_in='gse', coord_out='gsm')
cotrans(name_in='thc_pos_gse', name_out='sm_data', coord_in='gse', coord_out='sm')
cotrans(name_in='thc_pos_gse', name_out='geo_data', coord_in='gse', coord_out='geo')
from pytplot import tplot
tplot(['gsm_data', 'sm_data', 'geo_data'])
LMN Coordinates
- pyspedas.cotrans.gsm2lmn.gsm2lmn(times, Rxyz, Bxyz, swdata=None)
Transforms vector field from GSM to LMN (boundary-normal) coordinate system for the magnetopause using the Shue et al. (1998) magnetopause model
Getting/Setting the Coordinate System
- pyspedas.cotrans_get_coord(name)
This function returns the coordinate system of a tplot variable
- Parameters
name – str name of the tplot variable
Notes
- The coordinate system is stored in the variable’s metadata at:
metadata[‘data_att’][‘coord_sys’]
See cotrans_set_coord to update the coordinate system
- Returns
Coordinate system of the tplot variable or None if the coordinate system isn’t set
- pyspedas.cotrans_set_coord(name, coord)
This function sets the coordinate system of a tplot variable
- Parameters
name – str name of the tplot variable
Notes
- The coordinate system is stored in the variable’s metadata at:
metadata[‘data_att’][‘coord_sys’]
See cotrans_get_coord to return the coordinate system
- Returns
True/False depending on if the operation was successful
- Return type
Support Routines
- pyspedas.cotrans.cotrans_lib.get_time_parts(time_in)
Split time into year, doy, hours, minutes, seconds.fsec.
- pyspedas.cotrans.cotrans_lib.csundir_vect(time_in)
Calculate the direction of the sun.
- Parameters
- Returns
- pyspedas.cotrans.cotrans_lib.cdipdir(time_in=None, iyear=None, idoy=None)
Compute dipole direction in GEO coordinates.
Notes
Compute geodipole axis direction from International Geomagnetic Reference Field (IGRF-13) model for time interval 1970 to 2020. For time out of interval, computation is made for nearest boundary. Same as SPEDAS cdipdir.
- pyspedas.cotrans.cotrans_lib.cdipdir_vect(time_in=None, iyear=None, idoy=None)
Compute dipole direction in GEO coordinates.
Similar to cdipdir but for arrays.
- Parameters
- Return type
Notes
Same as SPEDAS cdipdir_vec.
- pyspedas.cotrans.cotrans_lib.tgeigse_vect(time_in, data_in)
GEI to GSE transformation.
- pyspedas.cotrans.cotrans_lib.subgei2gse(time_in, data_in)
Transform data from GEI to GSE.
- pyspedas.cotrans.cotrans_lib.tgsegei_vect(time_in, data_in)
GSE to GEI transformation.
- pyspedas.cotrans.cotrans_lib.subgse2gei(time_in, data_in)
Transform data from GSE to GEI.
- pyspedas.cotrans.cotrans_lib.tgsegsm_vect(time_in, data_in)
Transform data from GSE to GSM.
- pyspedas.cotrans.cotrans_lib.subgse2gsm(time_in, data_in)
Transform data from GSE to GSM.
- pyspedas.cotrans.cotrans_lib.tgsmgse_vect(time_in, data_in)
Transform data from GSM to GSE.
- pyspedas.cotrans.cotrans_lib.subgsm2gse(time_in, data_in)
Transform data from GSM to GSE.
- pyspedas.cotrans.cotrans_lib.tgsmsm_vect(time_in, data_in)
Transform data from GSM to SM.
- pyspedas.cotrans.cotrans_lib.subgsm2sm(time_in, data_in)
Transform data from GSM to SM.
- pyspedas.cotrans.cotrans_lib.tsmgsm_vect(time_in, data_in)
Transform data from SM to GSM.
- pyspedas.cotrans.cotrans_lib.subsm2gsm(time_in, data_in)
Transform data from SM to GSM.
- pyspedas.cotrans.cotrans_lib.subgei2geo(time_in, data_in)
Transform data from GEI to GEO.
- pyspedas.cotrans.cotrans_lib.subgeo2gei(time_in, data_in)
Transform data from GEO to GEI.
- pyspedas.cotrans.cotrans_lib.subgeo2mag(time_in, data_in)
Transform data from GEO to MAG.
- Parameters
- Returns
Coordinates in MAG.
- Return type
Array
offloat
Notes
Adapted from spedas IDL file geo2mag.pro.
- pyspedas.cotrans.cotrans_lib.submag2geo(time_in, data_in)
Transform data from MAG to GEO.
- Parameters
- Returns
Coordinates in GEO.
- Return type
Array
offloat
Notes
Adapted from spedas IDL file mag2geo.pro.
- pyspedas.cotrans.cotrans_lib.ctv_mm_mult(m1, m2)
Vectorized multiplication of two lists of 3x3 matrices.
- Parameters
- Returns
Array (3, 3, n). List of n 3x3 matrices.
- Return type
Array
offloat
Notes
Adapted from spedas IDL file matrix_array_lib.pro.
- pyspedas.cotrans.cotrans_lib.j2000_matrix_vec(time_in)
Get the conversion matrix for J2000 coordinates.
Gives a matrix that transforms from mean earth equator and equinox of J2000 into the true earth equator and equinox for the dates and times.
- Parameters
- Returns
Transformation matrix.
- Return type
Matrix
offloat
Notes
Adapted from spedas IDL file spd_make_j2000_matrix_vec.pro.
- pyspedas.cotrans.cotrans_lib.ctv_mx_vec_rot(m, v)
Vectorized multiplication of n matrices by n vectors.
- Parameters
- Returns
Array (n, k). List of n vectors.
- Return type
Array
offloat
Notes
Adapted from spedas IDL file matrix_array_lib.pro.
- pyspedas.cotrans.cotrans_lib.subgei2j2000(time_in, data_in)
Transform data from GEI to J2000.
- pyspedas.cotrans.cotrans_lib.subj20002gei(time_in, data_in)
Transform data from J2000 to GEI.
- pyspedas.cotrans.cotrans_lib.subcotrans(time_in, data_in, coord_in, coord_out)
Transform data from coord_in to coord_out.
Calls the other sub functions in this file.
Utilities
Time Conversions
Convert from unix time to a string
- pyspedas.time_string(float_time=None, fmt=None)
Transform a list of float daytime values to a list of strings.
Example
from pyspedas import time_string
time_string(1444953600.0)
'2015-10-16 00:00:00.000000'
Convert from a string to unix time
- pyspedas.time_double(str_time=None)
Transform a list of datetimes from string to decimal.
Same as time_float.
Example
from pyspedas import time_double
time_double('2015-10-16/14:00')
1445004000.0
Convert from a string or unix time to a datetime object
- pyspedas.time_datetime(time=None, tz=None)
Find python datetime.
- Transform a list of float daytime values to a list of pythonic
‘datetime.datetime’ values.
- Parameters
time (
float/list
offloats
orstr/list
ofstr
, optional) – Input time. The default is None, which returns the time now.- Returns
Datetimes as datetime.datetime.
- Return type
Example
from pyspedas import time_datetime
time_datetime('2015-10-16/14:00')
datetime.datetime(2015, 10, 16, 14, 0, tzinfo=datetime.timezone.utc)